
S.No Regd. No. Page No.

1 221FA19012

2 221FA19015

3 221FA19062

4 221FA19065

5 221FA19025

6 221FA19029

7 221FA19048

8 221FA19061

B.Tech. - CSE- Cyber Security

3

21

Index

8 221FA19061

9 221FA19005

10 221FA19045

11 221FA19051

12 221FA19052

13 221FA19024

14 221FA19031

15 221FA19033

16 221FA19054

17 221FA19007

18 221FA19047

19 221FA19049

20 231LA19001

21 221FA19003

22 221FA19011

23 221FA19018

24 221FA19060

25 221FA19017

26 221FA19043

27 221FA19058

28 221FA19067

109

44

66

77

91

28 221FA19067

29 221FA19002

30 221FA19027

31 221FA19028

32 221FA19046

33 221FA19008

34 221FA19010

35 221FA19032

36 221FA19059

37 221FA19016

38 221FA19037

39 221FA19053

40 221FA19063

41 221FA19004

42 221FA19040

43 221FA19044

44 221FA19057

45 221FA19006

46 221FA19013

160

130

143

175

46 221FA19013

47 221FA19022

48 221FA19026

49 221FA19001

50 221FA19009

51 221FA19019

52 221FA19056

53 221FA19014

54 221FA19021

55 221FA19039

56 221FA19064

57 221FA19020

58 221FA19030

59 221FA19038

60 221FA19055

201

218

230

186

A FIELD PROJECT/IDP REPORT ON

ER - Diagram

Submitted partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

CYBER SECURITY

Submitted by

DAMARACHARLA GEETHA HARIKA (221FA19012)

PALGULLA RANGASWAMI REDDY (221FA19015)

 SYED SHANIKA ZAIDA (221FA19062)

 YADAVALLI MEENAKSHI (221FA19065)

Department of ACSE

School of Computing and Informatics

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH

(Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April, 2024

1

VIG NAN'S
Foundation for Science, Technology & Research

(Deemed to be University)
-Estd. u/s 3 of UGC Act 1956

VIG NAN'S
(Deemed to)le Univer.slty)

-Eft11 uhlofUGCJ.dt!Y..G

CERTIFICATE

This is to certify that the field project/IDP entitled "ER - Diagram" being submitted by
221FA19012-DAMARACHARLA GEETHA HARJKA,221FAl9015- PALGULLA
RANGASWAMI REDDY,221FA19062- SYED SHANIKA ZAIDA, 221FAl9065-
YADAVALLI MEENAKSHI in partial fulfilment of Bachelor of "Technology in the
Department of Advanced Computer Science and Engineering, Vignan's Foundation For
Science Technology & Research (Deemed to be University), Vadlamudi, Guntur District,
Andhra Pradesh, India, is a b�nafidc work carried out by them under my guidance and
supervision.

Guide: HOD/A CSE

Dr.Venkatesulu Dondeti

DECLARATION

We hereby declare that our project work described in the field project titled “ER Diagram”

which is being submitted by us for the partial fulfilment in the department of ACSE, Vignan’s

Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi,

Guntur, Andhra Pradesh, and the result of investigations are carried out by us under the

guidance of Dr. CH. Rose Rani.

DAMARACHARLA GEETHA HARIKA 221FA19012

PALGULLA RANGASWAMI REDDY 221FA19015

SYED SHANIKA ZAIDA 221FA19062

YADAVALLI MEENAKSHI 221FA19065

3

VIG NAN'S
(Deemed to be University)

Abstract

This project focuses on designing and implementing a University Management System to

manage the data related to courses, students, instructors, and enrollments. The system is built

using a relational database model with ER diagramming techniques to map relationships

between entities such as courses, students, and instructors. The project includes designing the

entity-relationship (ER) diagram, converting it into a relational model, and implementing the

database using SQL queries. Additionally, the report provides an in-depth analysis of the results

obtained, detailing how the system efficiently manages university data. The project aims to

enhance the understanding of database management principles and the implementation of

relational databases in real-world scenarios.

4

Contents

 Name of the Content

1. Introduction

2. Database Design and Implementation

2.1 Software and Hardware

Requirements

3. Entity-Relationship (ER) Model

3.1 Entities and Attributes

3.2 Relationships

4. Relational Model

4.1 Tables and Constraints

5. ER Diagram

6. Query Implementation

7. Result Analysis

7.1 Data Integrity

7.2 Query Performance

7.3 Scalability and Future Considerations

8. Conclusion

9. References

5

1.Introduction

In the contemporary digital landscape, effective data management is paramount for the success

of any e-commerce platform. The intricate relationships between users, accounts, products, and

categories necessitate a robust database system that ensures data integrity, scalability, and

efficient retrieval. This report delves into the comprehensive design and implementation of a

database system tailored for an e-commerce marketplace, encompassing user profiles, account

management, product categorization, and shop certifications. By meticulously converting the

provided schemas into an Entity-Relationship (ER) diagram and subsequently into a relational

model, this project aims to establish a foundational framework that supports seamless

operations, user interactions, and product management within the marketplace.

The primary objective is to create an ER diagram that visually represents the entities and their

interrelations, facilitating a clear understanding of the data flow and dependencies. This

diagram serves as a blueprint for the relational database, ensuring that the system is both

efficient and scalable. Furthermore, the report outlines the necessary software and hardware

requirements, detailing the tools and technologies employed during the design and

implementation phases. Through structured query implementation and thorough result

analysis, the project assesses the system's performance, data integrity, and potential for future

enhancements.

In this project, we develop a database system for a University Management System. The

database stores information about courses, course offerings, students, instructors, and

enrollment data. The main objective is to efficiently manage and organize the university's

academic records using a relational database approach. The system allows for querying and

updating of information, providing a comprehensive solution for managing university data.

6

2.Database Design and Implementation

The database design employs the Entity-Relationship (ER) model, visually representing

entities and their relationships. The relational schema is developed to structure the database

tables, establishing primary and foreign key constraints to maintain data integrity.

2.1 Software and Hardware Requirements:

Software Requirements:

• Database Management System: MySQL or PostgreSQL

• Development Environment: SQL Workbench or any SQL IDE (e.g., DBeaver)

• Operating System: Windows 10 or later, Linux (Ubuntu), or Mac OS X

Hardware Requirements:

• Processor: Minimum Intel i5 or equivalent (quad-core recommended)

• RAM: Minimum 8 GB (16 GB preferred for better performance)

• Storage: Minimum 50 GB of free space (SSD recommended for speed)

• Network: Reliable internet connection for software installation and updates

7

3.Entity-Relationship (ER) Model

The ER model for the University Management System includes entities such as Courses,

Students, Instructors, and Enrollments. Each entity has a set of attributes that define its

properties. Relationships between entities are mapped with cardinality constraints, ensuring

accurate representation of university processes. For instance, students enroll in courses, and

instructors teach courses. The cardinalities are defined to accurately represent these

relationships and their constraints.

3.1Entities and Attributes:

1.Employee:

• Attribute:

o EmployeeNumber : Primary Key(PK),uniquely identifies each

employee(integer)

o FirstName: Stores the first name of the employee (String)

o LastName: Stores the last name of the employee (String)

o ZipCode: Stores the postal code for the employee's address (String)

2. Customer:

• Attributes:

o CustomerNumber: Primary Key (PK), uniquely identifies each customer

(Integer)

o FirstName: Stores the first name of the customer (String)

o LastName: Stores the last name of the customer (String)

o ZipCode: Stores the postal code for the customer’s address (String)

3. Part:

• Attributes:

o PartNumber: Primary Key (PK), uniquely identifies each part (Integer)

o PartName: Stores the name of the part (String)

o Price: Stores the price of the part (Decimal)

8

4. Order:

• Attributes:

o OrderNumber: Primary Key (PK), uniquely identifies each order (Integer)

o OrderDate: Stores the date when the order was placed (Date)

o CustomerNumber: Foreign Key (FK), references Customer (Integer)

o EmployeeNumber: Foreign Key (FK), references Employee (Integer)

5. OrderLine:

• Attributes:

o OrderLineNumber: Primary Key (PK), uniquely identifies each order line

(Integer)

o OrderNumber: Foreign Key (FK), references Order (Integer)

o PartNumber: Foreign Key (FK), references Part (Integer)

o Quantity: Stores the quantity of parts in the order line (Integer)

o Price: Stores the price of the part at the time of order (Decimal)

3.2Relationships:

1. Employee-Manages-Orders:

o Description: An employee manages orders.

o Entities Involved: Employee, Order

o Relationship Type: One-to-Many (1) - One employee can manage multiple

orders, but each order is managed by one employee.

2. Customer-Places-Orders:

o Description: A customer places orders.

o Entities Involved: Customer, Order

o Relationship Type: One-to-Many (1) - One customer can place multiple orders,

but each order belongs to one customer.

3. Order-Contains-OrderLines:

o Description: An order can contain multiple order lines.

o Entities Involved: Order, OrderLine

o Relationship Type: One-to-Many (1) - One order can have multiple order lines,

but each order line is associated with one order.

4. OrderLine-Includes-Part:

9

o Description: An order line includes a part.

o Entities Involved: OrderLine, Part

o Relationship Type: Many-to-One (N:1) - Multiple order lines can include the

same part, but each order line includes only one part.

10

4.Relational Model

The relational model is derived from the ER diagram, where each entity and relationship is

represented as a table. Primary keys and foreign keys are established to ensure referential

integrity. Tables such as Courses, Course Offerings, Students, and Instructors have been

created to store and manage data effectively. The relational model supports various queries to

fetch and update data.

4.1Tables and Constraints:

1. Employee Table:

• Columns:

o EmployeeNumber: Primary Key (Integer)

o FirstName: String

o LastName: String

o ZipCode: String

2. Customer Table:

• Columns:

o CustomerNumber: Primary Key (Integer)

o FirstName: String

o LastName: String

o ZipCode: String

3. Part Table:

• Columns:

o PartNumber: Primary Key (Integer)

o PartName: String

o Price: Decimal

4. Order Table:

• Columns:

o OrderNumber: Primary Key (Integer)

o OrderDate: Date

o CustomerNumber: Foreign Key (references CustomerNumber in Customer

table)

11

o EmployeeNumber: Foreign Key (references EmployeeNumber in Employee

table)

5. OrderLine Table:

• Columns:

o OrderLineNumber: Primary Key (Integer)

o OrderNumber: Foreign Key (references OrderNumber in Order table)

o PartNumber: Foreign Key (references PartNumber in Part table)

o Quantity: Integer

o Price: Decimal

12

5.ER Diagram

13

secbannu,.,_,

sernrnter

COURESE OFFERINGS

""'

lt.rSTRUCTORS STI..IDENTS

6.Query Implementation

To manage the university's database efficiently, several SQL queries were developed. These

queries handle tasks such as retrieving student enrollment information, fetching course details,

and managing instructor assignments. Each query ensures data consistency and allows for

efficient data manipulation and retrieval.

Examples of queries implemented:

1. Retrieve all courses offered in a specific semester:

 SELECT course_id, title, credits FROM Courses WHERE semester = 'Fall';

 This query retrieves a list of courses offered in the specified semester, including their IDs,

titles, and credit information.

2. Find all students enrolled in a particular course:

 SELECT Students.student_id, Students.name FROM Students

 JOIN Enrollments ON Students.student_id = Enrollments.student_id

 WHERE Enrollments.course_id = 'CS101';

This query lists all students enrolled in the course with ID 'CS101', showing each student's ID

and name.

3. List instructors and the courses they teach:

 SELECT Instructors.name, Courses.title FROM Instructors

 JOIN Course_Offerings ON Instructors.instructor_id = Course_Offerings.instructor_id

 JOIN Courses ON Course_Offerings.course_id = Courses.course_id;

This query returns a list of instructors along with the courses they teach, joining relevant tables

to provide comprehensive information.

14

7.Result Analysis

7.1 Data Integrity

The database structure ensures data integrity by establishing primary keys for each table,

making each record unique and preventing duplication. Foreign key constraints enforce

referential integrity between related tables, ensuring that relationships among entities are

maintained accurately. For example, each enrollment is correctly linked to a student and a

course, validating the integrity of these relationships. The design also includes checks for

constraints such as ensuring that the same course cannot be assigned to the same student more

than once for a given semester, further reinforcing data integrity.

7.2 Query Performance

The database demonstrates efficient query performance, with SQL queries optimized to handle

data retrieval and manipulation promptly. For instance, when querying the enrollment data for

a specific course, the results are returned swiftly, showcasing the effectiveness of the indexing

on fields like student IDs and course IDs. The relational structure of the database supports

efficient data retrieval by allowing queries to filter and join data based on these indexed fields,

ensuring that operations remain efficient even as the dataset grows.

7.3 Scalability and Future Considerations

The database is designed with scalability and future expansion in mind, allowing for the easy

addition of new entities and attributes, such as new courses or student records, without

disrupting the existing structure. Future enhancements could involve integrating additional

functionalities like tracking student performance over time, incorporating online registration

features, or expanding the course catalog dynamically. These improvements would not only

expand the capabilities of the system but also streamline academic and administrative

operations.The successful implementation of the University Management System database

demonstrates the robustness of relational databases in managing complex relationships and

ensuring the smooth operation of university processes.

15

8.Conclusion

The University Management System project demonstrates the importance of database

management principles in organizing and handling large sets of data. By designing a

comprehensive ER model and implementing it through a relational database, the project

provides a reliable solution for managing university records. The use of SQL queries further

showcases how relational databases can efficiently manage and retrieve data, offering valuable

insights into database design and implementation.

16

9.References

1. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of Database Systems. Pearson.

2. Date, C. J. (2004). An Introduction to Database Systems. Addison-Wesley.

3. Connolly, T. M., & Begg, C. (2015). Database Systems: A Practical Approach to

Design, Implementation, and Management. Pearson.

4. Rob, P., & Coronel, C. (2016). Database Systems: Design, Implementation, &

Management. Cengage Learning.

5. Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008). Database Systems: The

Complete Book. Prentice Hall.

6. Korth, H. F., & Silberschatz, A. (2002). Database System Concepts. McGraw-Hill.

7. O’Neil, P., & O’Neil, E. (2009). Database: Principles, Programming, and

Performance. Morgan Kaufmann.

8. Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks."

Communications of the ACM, 13(6), 377-387.

9. Chen, P. P. (1976). "The Entity-Relationship Model—Toward a Unified View of Data."

ACM Transactions on Database Systems, 1(1), 9-36.

10. Firebird Project. (n.d.). "Firebird SQL." Retrieved from https://firebirdsql.org/

11. MySQL. (n.d.). "MySQL Documentation." Retrieved from https://dev.mysql.com/doc/

12. PostgreSQL. (n.d.). "PostgreSQL Documentation." Retrieved from

https://www.postgresql.org/docs/

13. Ambler, S. W. (2003). The Object Primer: Agile Model-Driven Development.

Cambridge University Press.

14. Oracle Corporation. (n.d.). "Oracle Database Documentation." Retrieved from

https://docs.oracle.com/en/database/

15. IBM. (n.d.). "IBM Db2 Documentation." Retrieved from

https://www.ibm.com/docs/en/db2

16. Microsoft. (n.d.). "SQL Server Documentation." Retrieved from

https://docs.microsoft.com/en-us/sql/sql-server/

17. Beighley, L., & Rhyne, M. (2008). Head First SQL: Your Brain on SQL -- A Learner's

Guide. O'Reilly Media.

18. Hoffer, J. A., Venkataraman, R., & Topi, H. (2013). Modern Database Management.

Pearson.

17

https://firebirdsql.org/
https://dev.mysql.com/doc/
https://www.postgresql.org/docs/
https://docs.oracle.com/en/database/
https://docs.microsoft.com/en-us/sql/sql-server/

19. Grelck, C., & Mertens, H. (2016). "An Object-Relational Database Management

System with a Comprehensive Query Language." Concurrency and Computation:

Practice and Experience, 28(2), 456-479.

20. Hellerstein, J. M., Stonebraker, M., & Hamilton, J. (2007). "Architecture of a Database

System." Foundations and Trends in Databases, 1(2), 141-259.

18

A FIELD PROJECT/IDP REPORT ON

Entity Relationship Diagram

Submitted partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

CYBER SECURITY

Submitted by

 YANDRAPU MAHESH (221FA19025)

 BALA PRASANTH (221FA19029)

 KAMINENI LEELA TAPASWI (221FA19048)

 MIRIYALA NAGA SAI (221FA19061)

Department of ACSE

School of Computing and Informatics

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH

(Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April, 2024

19

VIG NAN'S
Foundation for Science, Technology & Research

(Deemed to be University)
-Estd. u/s 3 of UGC Act 1956

VIGNA N'S
......_... ... tc-.c.w �. �

(Op•� I� b• Unn'!-ruy) ,,� � ...
CERTlnCATE

This is to certify that the field projec DP entitled "Entity Relarionsblp Diagram" being
submitted by Y 1'1)RAP l\l HESTI-221F 19025, BALA PRA5A;\TH-221F 19029,
KA..,tU'\£1'1 LEELA TAP,\S""l-221FA19048. MIRIYALA ::-iAGA SAl-221FAJ9061 in
partial fulfilment of Bachelor of Technology in the Department of Advanced Computer Science
and Engineering, \ ignan's Foundation For Science Technology 8:. Research (Deaned to be
University), Vadlamudi. Guntur District, Andhra Pradesh. India, is a bonafide work carried out
by them under my guidance and supervision.

�
-Guide

Dr.Venkatesulu Dondeti

.. o

DECLARATION

We hereby declare that our project work described in the field project titled Entity Relationship

Diagram”which is being submitted by us for the partial fulfilment in the department of ACSE,

Vignan’s Foundation for Science, Technology and Research (Deemed to be University),

Vadlamudi, Guntur, Andhra Pradesh, and the result of investigations are carried out by us under

the guidance of Dr. CH. Rose Rani.

YANDRAPU MAHESH 221FA19025

BALA PRASANTH 221FA19029

KAMINENI LEELA TAPASWI 221FA19048

MIRIYALA NAGA SAI 221FA19061

21

VIG NAN'S
(Deemed to be University)

ABSTRACT

This project outlines the design and implementation of a relational database for an e-commerce

platform to manage user profiles, accounts (seller and buyer), shops, certified shops, and

product classifications. The primary goal is to develop a structured and scalable database that

efficiently handles the complexities of managing user data, shop details, and product

classifications. Through the use of an Entity-Relationship (ER) model, the project identifies

key entities, their attributes, and relationships, which are then translated into a relational

schema. This design ensures efficient data management, query performance, and scalability for

future growth.

The introduction discusses the growing complexity of managing data in e-commerce platforms.

With the increasing importance of digital platforms for businesses, a well-organized database

is essential to streamline operations and support growth. Managing user information, product

details, and shop-related data becomes more challenging as the business scales, making a robust

database design critical for operational efficiency.

Query implementation is another key aspect of this project. The database is designed to support

efficient queries, such as retrieving user details, product lists, or certified shop information.

Indexing and other optimization techniques are considered to ensure high query performance.

Scalability is built into the system to allow for future growth, making the database adaptable

to expanding data volumes without sacrificing performance.

22

TABLE OF CONTENTS

Content

1. Introduction

2. Database Design and Implementation

2.1 Software and Hardware Requirements

3. Entity-Relationship (ER) Model .

3.1 Entities and Attributes

3.2 Relationships

4. Relational Model

4.1 Tables and Constraints

5. ER Diagram

6. Query Implementation

7. Result Analysis

7.1 Data Integrity

7.2 Query Performance

7.3 Scalability and Future Considerations

8. Conclusion

9. References

23

INTRODUCTION

In the contemporary digital landscape, effective data management is paramount for the success

of any e-commerce platform. The intricate relationships between users, accounts, products, and

categories necessitate a robust database system that ensures data integrity, scalability, and

efficient retrieval. This report delves into the comprehensive design and implementation of a

database system tailored for an e-commerce marketplace, encompassing user profiles, account

management, product categorization, and shop certifications. By meticulously converting the

provided schemas into an Entity-Relationship (ER) diagram and subsequently into a relational

model, this project aims to establish a foundational framework that supports seamless

operations, user interactions, and product management within the marketplace.

The primary objective is to create an ER diagram that visually represents the entities and their

interrelations, facilitating a clear understanding of the data flow and dependencies. This

diagram serves as a blueprint for the relational database, ensuring that the system is both

efficient and scalable. Furthermore, the report outlines the necessary software and hardware

requirements, detailing the tools and technologies employed during the design and

implementation phases. Through structured query implementation and thorough result

analysis, the project assesses the system's performance, data integrity, and potential for future

enhancements.

The significance of this database design lies in its ability to streamline user account

management, enhance product categorization, and ensure certified shops maintain their

standards. By addressing these core areas, the system not only supports current operational

needs but also lays the groundwork for future expansions and feature integrations. As e-

commerce continues to evolve, the adaptability and robustness of the database system will play

a crucial role in maintaining a competitive edge, providing users with a reliable and efficient

platform for their shopping experiences.

This report is structured to guide the reader through each phase of the database design process,

from conceptual modeling to practical implementation. By the end of this document, readers

will gain a comprehensive understanding of the methodologies employed, the challenges

encountered, and the solutions devised to create a cohesive and functional database system.

The ensuing sections provide a detailed exploration of each component, underscoring the

importance of meticulous planning and strategic execution in database development.

24

 DATABASE DESIGN AND IMPLEMENTATION

 2.1 Software and Hardware Requirements

The successful design and implementation of the database system hinge on the

selection of appropriate software and hardware resources. The following outlines the

essential requirements

Software Requirements:

Database Management System (DBMS): MySQL 8.0

MySQL was chosen for its robustness, scalability, and widespread community support,

making it ideal for handling complex queries and large datasets inherent in e-commerce

platforms.

 Modeling Tools:

 MySQL Workbench: For designing the ER diagram and facilitating database design.

 Lucidchart: Supplementary tool for creating detailed and shareable ER diagrams.

Development Environment:

 Visual Studio Code: As the primary code editor for writing SQL scripts and managing

 database interactions.

 PHP: For backend development, enabling dynamic interactions between the database

 and user interfaces.

Version Control:

Git :Git was employed to manage code versions, ensuring collaborative efficiency and

maintaining a history of changes.

Operating System: Windows 10/11 or Linux Ubuntu 20.04 LTS

 Depending on the deployment environment, both operating systems provide a stable

 platform for running the DBMS and associated tools.

Hardware Requirements:

Processor: Intel Core i5 or equivalent

 A mid-range processor ensures smooth operation of the DBMS and handling of

 multiple concurrent queries.

Memory (RAM): Minimum 8 GB

Adequate memory is crucial for managing large datasets and supporting efficient query

processing.

25

Storage:

 SSD: 256 GB or higher

Solid State Drives significantly improve data retrieval speeds, reducing latency in

database operations.

Network: Reliable high-speed internet connection

 Essential for cloud-based database management and ensuring uninterrupted access for

 users.

Additional Tools:

Backup Solutions: Regular automated backups using tools like mysqldump to prevent

data loss.

Security Software: Firewalls and antivirus programs to safeguard against unauthorized

access and potential threats.

By adhering to these software and hardware specifications, the database system is positioned

to deliver optimal performance, reliability, and scalability, meeting the demands of a dynamic

e-commerce environment.

26

ENTITY-RELATIONSHIP (ER) MODEL

 3.1 Entities and Attributes

The ER model is a pivotal component in database design, providing a visual representation of

the data structure and its interrelations. The following outlines the primary entities and their

corresponding attributes within the system:

1. User Profile:

 - User_Citizen_Code (Primary Key)

 - User_First_Name

 - User_Last_Name

 - User_Email

 - User_Phone_Number

 - Account_no (Foreign Key referencing Account)

2. Account:

 - Account_id (Primary Key)

 - Account_Name

 - Account_Password

 - Type_of_Account

3. Seller Account:

 - Seller_Account_id (Primary Key)

 - Shop_Number

4. Buyer Account:

 - Buyer_Account_id (Primary Key)

 - Cart_Info

5. Shop:

 - Shop_Number (Primary Key)

 - Shop_Name

6. Certified Shop:

 - Certified_Shop_Number (Primary Key)

 - Certification_Info

27

7. Product:

 - Product_Code (Primary Key)

 - Product_Name

 - Certified_Shop_Number (Foreign Key)

8. Category:

 - Category_Code (Primary Key)

 - Category_Name

 - Production_Classification

9. Production Classification:

 - Production_Code (Primary Key)

 - Description

 3.2 Relationships

The relationships between these entities are integral to understanding the data flow within the

system:

- User Profile to Account:

 Each User Profile is linked to one Account via the Account_no foreign key. This

 establishes a one-to-one relationship, ensuring that each user is associated with a

 unique account.

- Account to Seller Account / Buyer Account:

 An Account can be either a Seller Account or a Buyer Account, determined by the

Type_of_Account attribute. This is a one-to-many relationship, where one Account can

lead to multiple Seller or Buyer Accounts based on its type.

- Sller Account to Shop:

A Seller Account may be associated with one Shop, establishing a one-to-one

relationship. This connection allows sellers to manage their respective shops within the

marketplace.

- Certified Shop to Seller Account:

Certified Shops are related to Seller Accounts, indicating that a seller's shop has met

certain certification criteria. This is a one-to-one relationship ensuring that each

certified shop is uniquely tied to a seller.

- Product to Certified Shop:

Products are linked to Certified Shops via the Certified_Shop_Number foreign key.

This represents a many-to-one relationship, where multiple products can be associated

with a single certified shop.

28

- Product to Category:

 Each Product may belong to one Category, creating a many-to-one relationship. This

 association aids in organizing products for easier navigation and management within

 the marketplace.

- Category to Production Classification:

 Categories are further classified under Production Classification, establishing a

 hierarchical relationship that enhances product categorization and classification.

 These relationships collectively ensure a structured and efficient data flow, facilitating

 seamless interactions between users, accounts, products, and shops within the e-commerce

 platform.

29

RELATIONAL MODEL

 4.1 Tables and Constraints

The relational model translates the ER diagram into a structured format comprising tables,

each with defined attributes and constraints to maintain data integrity and optimize

performance. Below is an overview of the primary tables and their constraints:

1. User_Profile

 - User_Citizen_Code (VARCHAR, Primary Key)

 - User_First_Name (VARCHAR)

 - User_Last_Name (VARCHAR)

 - User_Email (VARCHAR, UNIQUE, NOT NULL)

 - User_Phone_Number (VARCHAR)

 - Account_no (INT, Foreign Key referencing Account(Account_id), NOT NULL)

2. Account

 - Account_id (INT, Primary Key, AUTO_INCREMENT)

 - Account_Name (VARCHAR, NOT NULL)

 - Account_Password (VARCHAR, NOT NULL)

 - Type_of_Account (ENUM('Seller', 'Buyer'), NOT NULL)

3. Seller_Account

 - Seller_Account_id (INT, Primary Key, FOREIGN KEY referencing

 Account(Account_id))

 - Shop_Number (INT, Foreign Key referencing Shop(Shop_Number))

4. Buyer_Account

 - Buyer_Account_id (INT, Primary Key, FOREIGN KEY referencing

Account(Account_id))

 - Cart_Info (TEXT)

30

5. Shop

 - Shop_Number (INT, Primary Key, AUTO_INCREMENT)

 - Shop_Name (VARCHAR, NOT NULL, UNIQUE)

6. Certified_Shop

 - Certified_Shop_Number (INT, Primary Key, Foreign Key referencing

 Shop(Shop_Number))

 - Certification_Info (VARCHAR)

7. Product

 - Product_Code (INT, Primary Key, AUTO_INCREMENT)

 - Product_Name (VARCHAR, NOT NULL)

 - Certified_Shop_Number (INT, Foreign Key referencing

 Certified_Shop(Certified_Shop_Number), NOT NULL)

 - Category_Code (INT, Foreign Key referencing Category(Category_Code))

8. Category

 - Category_Code (INT, Primary Key, AUTO_INCREMENT)

 - Category_Name (VARCHAR, NOT NULL, UNIQUE)

 - Production_Classification (VARCHAR)

9. Production_Classification

 - Production_Code (INT, Primary Key, AUTO_INCREMENT)

 - Description (VARCHAR)

Constraints Overview:

- Primary Keys: Ensure each record within a table is unique and identifiable.

- Foreign Keys: Maintain referential integrity between related tables.

- Unique Constraints: Prevent duplicate entries in fields like User_Email and Shop_Name.

- Not Null Constraints: Ensure critical fields are always populated, maintaining data

completeness.

- Auto-Increment: Facilitate automatic generation of unique identifiers for primary keys.

31

Indexes:

- User_Email: Indexed to optimize search queries based on user email.

- Shop_Name: Indexed to enhance the speed of shop-related searches.

- Product_Name: Indexed to facilitate quick retrieval of product information.

Normalization:

The database is normalized up to the Third Normal Form (3NF) to eliminate data redundancy

and ensure data dependencies make sense. Each table contains data related to a single entity,

and all attributes are dependent solely on the primary key.

Sample Table Definitions:

CREATE TABLE Account (

 Account_id INT PRIMARY KEY AUTO_INCREMENT,

 Account_Name VARCHAR(100) NOT NULL,

 Account_Password VARCHAR(255) NOT NULL,

 Type_of_Account ENUM('Seller', 'Buyer') NOT NULL

);

CREATE TABLE User_Profile (

 User_Citizen_Code VARCHAR(20) PRIMARY KEY,

 User_First_Name VARCHAR(50),

 User_Last_Name VARCHAR(50),

 User_Email VARCHAR(100) UNIQUE NOT NULL,

 User_Phone_Number VARCHAR(15),

 Account_no INT,

 FOREIGN KEY (Account_no) REFERENCES Account(Account_id)

);

CREATE TABLE Seller_Account (

 Seller_Account_id INT PRIMARY KEY,

32

 Shop_Number INT,

 FOREIGN KEY (Seller_Account_id) REFERENCES Account(Account_id),

 FOREIGN KEY (Shop_Number) REFERENCES Shop(Shop_Number)

);

-- Additional table definitions follow similarly

By meticulously defining tables and constraints, the relational model ensures data integrity,

minimizes redundancy, and facilitates efficient data manipulation and retrieval within the

database system.

33

ER DIAGRAM

34

number

Shop

Seller

has cemficauon

mfo number

?roduchon

I
category

I

I
Product

I

ceee

dan1ficahon

QUERY IMPLEMENTATION

Efficient query implementation is critical for data retrieval, manipulation, and overall system

performance. The following sections outline key SQL queries designed to interact with the

database, addressing common operations within the e-commerce platform.

 6.1 User Registration

Purpose: Insert a new user profile and associated account into the database.

BEGIN TRANSACTION;

INSERT INTO Account (Account_Name, Account_Password, Type_of_Account)

VALUES ('JohnDoe', 'SecurePassword123', 'Buyer');

SET @AccountID = LAST_INSERT_ID();

INSERT INTO User_Profile (User_Citizen_Code, User_First_Name, User_Last_Name,

User_Email, User_Phone_Number, Account_no)

VALUES ('C123456789', 'John', 'Doe', 'john.doe@example.com', '555-1234', @AccountID);

COMMIT;

6.2 Adding a New Seller and Shop

Purpose: Create a seller account and associate it with a new shop.

BEGIN TRANSACTION;

INSERT INTO Account (Account_Name, Account_Password, Type_of_Account)

VALUES ('JaneSeller', 'AnotherSecurePass', 'Seller');

SET @SellerAccountID = LAST_INSERT_ID();

INSERT INTO Seller_Account (Seller_Account_id, Shop_Number)

VALUES (@SellerAccountID, NULL);

INSERT INTO Shop (Shop_Name)

VALUES ('Jane’s Boutique');

SET @ShopNumber = LAST_INSERT_ID();

UPDATE Seller_Account

SET Shop_Number = @ShopNumber

WHERE Seller_Account_id = @SellerAccountID;

35

COMMIT;

 6.3 Adding a Certified Shop

 Purpose: Certify an existing shop.

 INSERT INTO Certified_Shop (Certified_Shop_Number, Certification_Info)

 VALUES (101, 'Certified by E-Commerce Association');

 6.4 Adding a New Product

 Purpose: Insert a new product linked to a certified shop and category.

 INSERT INTO Product (Product_Name, Certified_Shop_Number, Category_Code)

 VALUES ('Stylish Jacket', 101, 5);

 6.5 Retrieving Products by Category

 Purpose: Fetch all products within a specific category.

 SELECT Product_Name, Shop_Name

 FROM Product

 JOIN Certified_Shop ON Product.Certified_Shop_Number

 Certified_Shop.Certified_Shop_Number

 JOIN Shop ON Certified_Shop.Certified_Shop_Number = Shop.Shop_Number

 WHERE Category_Code = 5;

 6.6 Updating User Contact Information

 Purpose: Update the phone number of a specific user.

 UPDATE User_Profile

 SET User_Phone_Number = '555-6789'

 WHERE User_Citizen_Code = 'C123456789';

 6.7 Deleting a Product

 Purpose: Remove a product from the database.

 DELETE FROM Product

 WHERE Product_Code = 202;

 6.8 Viewing Certified Shops and Their Products

 Purpose: List all certified shops along with their available products.

36

SELECT Shop.Shop_Name, Product.Product_Name, Product.Product_Code

FROM Certified_Shop

JOIN Shop ON Certified_Shop.Certified_Shop_Number = Shop.Shop_Number

JOIN Product ON Certified_Shop.Certified_Shop_Number =

Product.Certified_Shop_Number;

These queries demonstrate fundamental operations such as creating, reading, updating, and

deleting (CRUD) within the database. Optimizing these queries ensures swift data access and

manipulation, contributing to the overall efficiency of the e-commerce platform.

37

RESULT ANALYSIS

The implementation of the database system was subjected to rigorous testing to evaluate its

performance, data integrity, and scalability. The following sections provide an analysis of the

outcomes observed during these assessments.

 7.1 Data Integrity

Ensuring data integrity was paramount throughout the database design and implementation

phases. The application of primary and foreign key constraints effectively maintained

referential integrity, preventing orphaned records and ensuring that relationships between

entities remained consistent. For instance, attempts to insert a product without a

corresponding certified shop were rightly rejected by the system, safeguarding the relational

structure.

Unique constraints on attributes such as `User_Email` and `Shop_Name` prevented duplicate

entries, thereby maintaining the uniqueness of critical data points. Additionally, the use of

`NOT NULL` constraints on essential fields ensured that vital information was always

captured, reducing the risk of incomplete data entries.

Findings:

- Consistency: The database consistently enforced all defined constraints, ensuring reliable

data relationships.

- Accuracy: Data entries reflected accurately across related tables, affirming the effectiveness

of the relational model.

 7.2 Query Performance

Performance testing involved executing a series of complex queries to assess response times

and system load handling. Indexes on frequently queried fields such as `User_Email` and

`Shop_Name` significantly enhanced retrieval speeds, reducing query execution times even

under heavy load.

Batch operations, such as bulk inserts and updates, were executed efficiently, thanks to

optimized SQL queries and the underlying DBMS's capability to handle large transactions.

However, as the dataset scales, certain queries exhibited increased latency, highlighting areas

for further optimization.

Findings:

- Efficiency: Indexed fields contributed to swift data retrieval, maintaining high performance

standards.

- Scalability Challenges: As data volume grows, some queries may require additional

optimization techniques, such as query caching or database sharding.

38

 7.3 Scalability and Future Considerations

The current database design accommodates growth in user profiles, accounts, products, and

shops. However, to ensure long-term scalability, future enhancements may include:

- Partitioning Tables: Dividing large tables into manageable segments to improve query

performance.

- Implementing Caching Mechanisms: Utilizing in-memory caches like Redis to expedite

data retrieval.

- Optimizing Indexes: Regularly reviewing and adjusting indexes based on query patterns and

data usage.

- Incorporating Advanced Security Measures: Enhancing data protection through encryption

and role-based access controls.

Findings:

- Adaptive Design: The relational model's flexibility allows for seamless integration of

additional features and scaling strategies.

- Proactive Planning: Anticipating future growth ensures that the database remains robust and

responsive to evolving demands.

Overall, the database system demonstrated strong performance, data integrity, and a solid

foundation for scalability, positioning it well for current and future e-commerce operations.

39

CONCLUSION

The development of a comprehensive database system for an e-commerce marketplace

necessitates meticulous planning, robust design, and strategic implementation. Through the

conversion of detailed schemas into an Entity-Relationship (ER) diagram and the subsequent

establishment of a relational model, this project has successfully laid the groundwork for an

efficient and scalable data management system.

Key achievements of the project include:

- Robust ER Model: The ER diagram effectively visualizes the complex relationships between

users, accounts, products, and shops, facilitating a clear understanding of data

interdependencies.

- Efficient Relational Design: The relational model, underpinned by well-defined tables and

constraints, ensures data integrity, minimizes redundancy, and optimizes query performance.

- Effective Query Implementation: The execution of essential CRUD operations demonstrates

the system's capability to handle typical e-commerce functionalities, such as user registration,

product management, and shop certification.

- Positive Result Analysis: Testing affirmed the system's reliability in maintaining data

integrity and delivering satisfactory performance, with identified areas for future optimization

and scalability enhancements.

This database system serves as a foundational element for managing user accounts, facilitating

seamless e-commerce activities, and categorizing products within a dynamic marketplace. Its

structured approach not only addresses current operational needs but also provides the

flexibility to adapt to future expansions and technological advancements.

Moving forward, continuous monitoring and iterative improvements will be essential to uphold

performance standards and accommodate the evolving requirements of the e-commerce sector.

Incorporating advanced security measures, optimizing query performance, and expanding

scalability solutions will further enhance the system's robustness and reliability.

In conclusion, the successful design and implementation of this database system underscore

the critical role of strategic database management in driving the efficiency and success of e-

commerce platforms. It exemplifies how a well-architected database can support complex

operations, deliver superior user experiences, and sustain long-term growth in the competitive

digital marketplace.

40

REFERENCES

1. Elmasri, R., & Navathe, S. B. (2015). Fundamentals of Database Systems (7th ed.).

Pearson.

2. Coronel, C., & Morris, S. (2016). Database Systems: Design, Implementation, &

Management (11th ed.). Cengage Learning.

3. MySQL Documentation. (2023). Retrieved from

https://dev.mysql.com/doc/

4. Lucidchart. (2023). Creating ER Diagrams. Retrieved from

[https://www.lucidchart.com/pages/er-diagram](https://www.lucidchart.com/pages/er-

diagram)

5. W3Schools. (2023). SQL Tutorial. Retrieved from

https://www.w3schools.com/sql/

6. Amazon Web Services (AWS). (2023). Database Solutions for E-commerce. Retrieved

from https://aws.amazon.com/database/

7. Kumar, V., & Singh, R. (2022). Optimizing Database Performance for E-commerce

Platforms. International Journal of Computer Applications, 182(45), 34-40.

8. Stack Overflow. (2023). Best Practices for Database Design. Retrieved from

[https://stackoverflow.com/questions/1622001/best-practices-for-database-

design](https://stackoverflow.com/questions/1622001/best-practices-for-database-design)

9. ISO/IEC 11179-1:2015. (2015). Information technology — Metadata registries (MDR) —

Part 1: Framework. International Organization for Standardization.

10. IEEE Std 1016-2009. (2009). IEEE Standard for Information Technology—System

Design—Software Design Descriptions. IEEE.

41

A FIELD PROJECT/IDP REPORT ON

Functional dependencies on the Relation schema

Submitted partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

CYBER SECURITY

Submitted by

YARAMALA VENKATESWARA REDDY (221FA19005)

PULUGU SIRIVARSHINI (221FA19045)

SHAIK SOHAIL AHAMMED (221FA19051)

VADDURI VENKATA GIRISH (221FA19052)

Department of ACSE

School of Computing and Informatics

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH (Deemed

to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April, 2024

42

VIG NAN'S
Foundation for Science, Technology & Research

(Deemed to be University)
·Estd. u/s 3 of UGC Act 1956

VIGNAN'S
FourldmCO'I fo, Scltnce. Tectf',olo,gy. Rt-M..-cfl

(Deemed to be Univer�ity)
·E"d 14'\ 1 ol UGC Act t956

CERTIFICATE

This is to certify that the field project/IDP entitled "Functional dependencies on the
Relation schema" being submitted by YARAMALA VENKATESWARA REDDY-
221FA19005),PULUGU SIRIVARSHIN1-221FA19045,SHAIK SOHAIL
AHAM1\1ED-221FA19051,VADDURI VENKATA GIRISH-221FA19052 in partial
fulfilment of Bachelor of Technology in the Department of Advanced Computer Science
and Engineering, Vignan's Foundation For Science Technology & Research (Deemed to
be University), Vadlamudi, Guntur District, Andhra Pradesh, India, is a bonafide work
carried out by them under my guidance and supervision.

d??-.
Guide

C)!-
HOD/ACSE

Dr.Venkatesulu Dondeti

DECLARATION

We hereby declare that our project work described in the field project titled

“Functional dependencies on the Relation schema” which is being submitted by

us for the partial fulfilment in the department of ACSE, Vignan’s Foundation for

Science, Technology and Research (Deemed to be University), Vadlamudi,

Guntur, Andhra Pradesh, and the result of investigations are carried out by us

under the guidance of Dr. CH. Rose Rani.

YARAMALA VENKATESWARA REDDY 221FA19005

PULUGU SIRIVARSHINI 221FA19045

SHAIK SOHAIL AHAMMED 221FA19051

VADDURI VENKATA GIRISH 221FA19052

44

VIG NAN'S
(Deemed to be University)

Table of Contents

CONTENT

1. Abstract

2. Introduction

3. Overview

4. Canonical Cover

4.1 Compute B⁺

4.2 Prove AF is a Super Key

4.3 Compute a Canonical Cover

4.4 Interpret a 3NF Decomposition of R Based on the Canonical Cover

4.5 Interpret a BCNF Decomposition of R Using the Original Set of

Functional Dependencies

4.6 Can You Get the Same BCNF Decomposition of R as Above Using

the Canonical Cover?

5. Conclusion

6. References

45

ABSTRACT

This report delves into the analysis of functional dependencies within a relational database schema

R(A, B, C, D, E, F) and explores normalization processes to achieve optimal database design.

Specifically, it addresses a series of questions aimed at understanding attribute closures, identifying

super keys, computing canonical covers, and performing 3NF and BCNF decompositions based on

the given functional dependencies. Through the application of Armstrong's axioms and systematic

decomposition techniques, the report illustrates the steps necessary to ensure data integrity,

eliminate redundancy, and enhance query performance. The findings underscore the importance of

normalization in database design, providing a structured approach to managing complex data

relationships and preparing the schema for scalable and efficient operations.

46

 INTRODUCTION

In relational database design, understanding and managing functional dependencies is crucial for

ensuring both data integrity and storage efficiency. Functional dependencies describe how attributes

within a relation are related, indicating that the value of one or more attributes uniquely determines

the value of another attribute. These dependencies guide the normalization process, which aims to

organize a database schema in a way that minimizes redundancy and prevents data anomalies such

as inconsistencies during insertions, deletions, or updates. By ensuring a well-structured schema,

designers can optimize query performance, enhance data consistency, and reduce the likelihood of

errors.

This report focuses on analyzing a schema \(R(A, B, C, D, E, F) \) by examining its functional

dependencies and addressing key database design principles. The analysis includes identifying the

attribute closures, determining the superkeys within the schema, and computing the canonical cover

for the functional dependencies. These steps are vital in understanding the relationships between

attributes and ensuring that the schema satisfies the necessary conditions for efficiency. By

calculating the attribute closures, we can uncover the full set of attributes that depend on a particular

key, thus helping to identify superkeys that can uniquely identify tuples in the relation.

In addition, the report explores the normalization of the schema into Third Normal Form (3NF) and

Boyce-Codd Normal Form (BCNF). The process of normalization refines the schema, ensuring it

is free from redundancy and anomalies by splitting relations as needed. While 3NF focuses on

eliminating transitive dependencies while retaining some flexibility in design, BCNF provides a

stricter standard, ensuring every determinant is a candidate key. By examining both approaches, the

report sheds light on how these normalization techniques affect the database's structure, offering

insights into the trade-offs between maintaining simplicity and achieving the highest level of data

integrity..

47

Overview

Given the relation schema R(A, B, C, D, E, F) with the following set F of functional

dependencies:

1. A → B, C, D

2. B, C → D, E

3. B → D

4. D → A

The tasks are to:

a. Compute the closure of attribute B (B⁺).

b. Prove, using Armstrong's axioms, that AF is a super key.

c. Compute a canonical cover for the set F, detailing each step of the derivation.

d. Interpret a 3NF decomposition of R based on the canonical cover.

e. Interpret a BCNF decomposition of R using the original set of functional dependencies.

f. Determine whether the same BCNF decomposition can be achieved using the canonical cover.

48

 Canonical Cover

 4.1 Compute B⁺

Objective:

Determine the closure of attribute B, denoted as B⁺, given the set of functional dependencies F.

Functional Dependencies:

1. A → B, C, D

2. B, C → D, E

3. B → D

4. D → A

Procedure:

1. Start with B⁺ = {B}

2. Apply B → D:

 B⁺ = {B, D}

3. Apply D → A:

 B⁺ = {B, D, A}

4. Apply A → B, C, D:

 B is already in B⁺,

 Add C: B⁺ = {B, D, A, C}

5. Apply B, C → D, E:

 D is already in B⁺,

 Add E: B⁺ = {B, D, A, C, E}

6. No further dependencies can be applied.

Result:

B⁺ = {A, B, C, D, E}

Explanation:

Starting with B, we utilize the functional dependencies to progressively include attributes that are

functionally determined by B. The closure B⁺ encompasses all attributes that can be derived from

B through the given dependencies.

 4.2 Prove AF is a Super Key

 Objective:

49

Demonstrate that the combination of attributes A and F (AF) forms a super key for the relation R

using Armstrong's axioms.

Armstrong's Axioms:

1. Reflexivity: If Y ⊆ X, then X → Y.

2. Augmentation: If X → Y, then XZ → YZ for any Z.

3. Transitivity: If X → Y and Y → Z, then X → Z.

Procedure:

1. Start with AF⁺ = {A, F}

2. Apply A → B, C, D:

 AF⁺ = {A, F, B, C, D}

3. Apply B → D:

 D is already in AF⁺.

4. Apply D → A:

 A is already in AF⁺.

5. Apply B, C → D, E:

 Add E: AF⁺ = {A, F, B, C, D, E}

6. All attributes of R are included in AF⁺

Result:

AF⁺ = {A, B, C, D, E, F}

Conclusion:

Since AF⁺ includes all attributes of R, AF is a super key.

Explanation:

Using Armstrong's axioms, we iteratively apply the functional dependencies to expand the closure

of AF. The process confirms that AF determines every attribute in the relation, thereby

establishing AF as a super key.

50

4.3 Compute a Canonical Cover for the Functional Dependencies F

Objective:

Derive a canonical cover for the given set F of functional dependencies, ensuring it is minimal and

preserves equivalence.

Given Functional Dependencies:

1. A → B, C, D

2. B, C → D, E

3. B → D

4. D → A

Steps to Compute Canonical Cover:

Step 1: Split Right-Hand Sides (RHS) into Single Attributes

 - A → B

 - A → C

 - A → D

 - B, C → D

 - B, C → E

 - B → D

 - D → A

Step 2: Remove Redundant Functional Dependencies

 - Check A → D:

 - A → D is essential as removing it would lose the dependency.

 - Check B, C → D and B → D:

 - Since B → D is already present, B, C → D is redundant.

 - Remove B, C → D.

 Remaining Dependencies:

 - A → B

 - A → C

 - A → D

 - B, C → E

 - B → D

 - D → A

51

3. Step 3: Minimize Left-Hand Sides (LHS)

 - Check if any attributes in the LHS can be removed:

 - For B, C → E:

 - Check if B alone can determine E:

 - B⁺ = {B, D, A, C, E} (from part a)

 - Since B⁺ includes E, B → E can be derived.

 - Therefore, B, C → E is redundant.

 - Replace with B → E.

 Final Canonical Cover:

 - A → B

 - A → C

 - A → D

 - B → E

 - B → D

 - D → A

Step 4: Remove Extraneous Dependencies

 - Check for redundant dependencies:

 - Check A → D:

 - A → B, and B → D, so A → D is redundant via A → B and B → D.

 - Remove A → D.

 Final Canonical Cover:

 - A → B

 - A → C

 - B → E

 - B → D

 - D → A

Conclusion:

The canonical cover for F is:

- A → B

- A → C

52

- B → E

- B → D

- D → A

Explanation:

By systematically splitting the dependencies, removing redundancies, and minimizing the left-

hand sides, we derive a canonical cover that is both minimal and equivalent to the original set F.

 4.4 d. Interpret a 3NF Decomposition of R Based on the Canonical Cover

Objective:

Perform a Third Normal Form (3NF) decomposition of the relation R using the previously

computed canonical cover.

Canonical Cover:

1. A → B

2. A → C

3. B → E

4. B → D

5. D → A

3NF Decomposition Steps:

1. Identify Candidate Keys:

 - From part b, AF is a super key.

 - Compute minimal keys:

 - AF is minimal as removing either A or F would lose the ability to determine all

 attributes.

2. Apply 3NF Decomposition Rules:

 - For each functional dependency X → Y in the canonical cover:

 - Create a relation schema with attributes X ∪ Y.

3. Create Relation Schemas:

 - R1(A, B)

 - From A → B

 - R2(A, C)

 - From A → C

53

 - R3(B, E)

 - From B → E

 - R4(B, D)

 - From B → D

 - R5(D, A)

 - From D → A

4. Ensure All Attributes are Covered:

 - Combine relation schemas to cover all attributes {A, B, C, D, E, F}.

5. Handle the Primary Key:

 - Include a relation with the primary key:

 - R6(A, F)

 - Ensures that AF remains as a super key.

Final 3NF Decomposition:

1. R1(A, B)

2. R2(A, C)

3. R3(B, E)

4. R4(B, D)

5. R5(D, A)

6. R6(A, F)

Lossless Join Verification:

- Each relation shares a common attribute that serves as a key in at least one relation, ensuring that

joins do not result in loss of data.

Dependency Preservation:

- All functional dependencies in the canonical cover are preserved within the decomposed

relations.

Explanation:

The decomposition process ensures that each relation is in 3NF by eliminating transitive

dependencies and ensuring that every non-prime attribute is fully functionally dependent on every

candidate key. The addition of R6(A, F) maintains the super key AF, ensuring the integrity and

completeness of the database.

54

 4.5 Interpret a BCNF Decomposition of R Using the Original Set of Functional

Dependencies

Objective:

Perform a Boyce-Codd Normal Form (BCNF) decomposition of the relation R using the original

set of functional dependencies.

Original Functional Dependencies:

1. A → B, C, D

2. B, C → D, E

3. B → D

4. D → A

BCNF Decomposition Steps:

1. Identify Violations of BCNF:

 - A relation is in BCNF if, for every non-trivial functional dependency X → Y, X is a super key.

 - Check Each Functional Dependency:

 - A → B, C, D:

 - Is A a super key?

 - Compute A⁺:

 - A⁺ = {A, B, C, D} (from A → B, C, D)

 - Not all attributes are included, so A is not a super key.

 - Violation: Yes

 - B, C → D, E:

 - Is B, C a super key?

 - Compute (B, C)⁺:

 - From B, C → D, E

 - From D → A, and A → B, C, D

 - (B, C)⁺ = {B, C, D, E, A}

 - Missing F

 - Not a super key.

 - Violation: Yes

 - B → D:

55

 - Is B a super key?

 - Compute B⁺:

 - B⁺ = {B, D, A, C, E} (from part a)

 - Missing F

 - Not a super key.

 - Violation: Yes

 - D → A:

 - Is D a super key?

 - Compute D⁺:

 - D⁺ = {D, A, B, C}

 - Missing E, F

 - Not a super key.

 - Violation: Yes

2. Decompose Based on Violations:

 - First Decomposition (A → B, C, D):

 - Create:

 - R1(A, B, C, D)

 - R2(A, F) (remaining attributes)

 - Second Decomposition (R1):

 - Analyze R1 with dependencies:

 - A → B, C, D

 - D → A

 - Check BCNF:

 - A → B, C, D:

 - A is not a super key in R1 (R1⁺ = {A, B, C, D})

 - A is a super key for R1.

 - D → A:

 - D⁺ = {D, A, B, C} in R1

 - D is also a super key for R1.

 - No Violations.

56

 - Third Decomposition (R2):

 - R2(A, F) is already in BCNF as A is a key.

 - Final Decomposition:

 - R1(A, B, C, D)

 - R2(A, F)

 - R3(B, C, E) (from B, C → E)

3. Ensure All Attributes are Covered:

 - Combined, R1, R2, and R3 cover all attributes {A, B, C, D, E, F}.

4. Verify BCNF Compliance:

 - R1(A, B, C, D):

 - A and D are super keys.

 - R2(A, F):

 - A is a super key.

 - R3(B, C, E):

 - B, C is a super key for this relation.

Final BCNF Decomposition:

1. R1(A, B, C, D)

2. R2(A, F)

3. R3(B, C, E)

Lossless Join Verification:

- Each decomposition shares a common attribute that is a key in one of the relations, ensuring

lossless joins.

Dependency Preservation:

- All original functional dependencies are preserved within the decomposed relations.

Explanation:

The BCNF decomposition addresses each violation by decomposing the relation into smaller

relations where every functional dependency has a super key on its left-hand side. This ensures

that the schema is free from anomalies and redundancy, adhering strictly to BCNF requirements.

57

 4.6 Can You Get the Same BCNF Decomposition of R as Above Using the Canonical

Cover?

Objective:

Determine whether the BCNF decomposition obtained using the canonical cover is identical to the

one derived using the original set of functional dependencies.

Canonical Cover Derived in 4.3:

- A → B

- A → C

- B → E

- B → D

- D → A

Procedure:

1. Identify Violations of BCNF Using Canonical Cover:

 - A → B:

 - A is not a super key (A⁺ = {A, B, C, D, E})

 - Violation: Yes

 - A → C:

 - A is not a super key.

 - Violation: Yes

 - B → E:

 - B is not a super key.

 - Violation: Yes

 - B → D:

 - B is not a super key.

 - Violation: Yes

 - D → A:

 - D is not a super key.

 - Violation: Yes

2. Decompose Based on Violations:

58

 - First Decomposition (A → B):

 - Create:

 - R1(A, B)

 - R2(A, C, D, E, F)

 - Second Decomposition (R2):

 - Analyze R2 with dependencies:

 - A → C, D

 - B → E, D (Not applicable as B is not in R2)

 - D → A

 - Check BCNF:

 - A → C, D:

 - A is not a super key in R2 (R2⁺ = {A, C, D})

 - Violation: Yes

 - D → A:

 - D⁺ = {D, A, C}

 - Violation: Yes

 - Decompose R2 based on A → C:

 - R3(A, C)

 - R4(A, D, E, F)

 - Third Decomposition (R4):

 - Analyze R4 with dependencies:

 - A → D

 - D → A

 - Check BCNF:

 - A and D are super keys.

 - No Violations.

 - Additional Decomposition (R1, R3, R4):

59

 - R1(A, B)

 - R3(A, C)

 - R4(A, D, E, F)

 - Further Decomposition for B → E and B → D:

 - Create:

 - R5(B, E)

 - R6(B, D)

 Final Decomposition Using Canonical Cover:

1. R1(A, B)

2. R3(A, C)

3. R4(A, D, E, F)

4. R5(B, E)

5. R6(B, D)

Comparison with Original BCNF Decomposition (4.5):

- Original BCNF Decomposition:

 1. R1(A, B, C, D)

 2. R2(A, F)

 3. R3(B, C, E)

- Decomposition Using Canonical Cover:

 1. R1(A, B)

 2. R3(A, C)

 3. R4(A, D, E, F)

 4. R5(B, E)

 5. R6(B, D)

60

Conclusion:

No, the BCNF decomposition derived using the canonical cover is different from the original BCNF

decomposition obtained using the original set of functional dependencies. The decomposition using

the canonical cover results in more relations and splits the attributes further to address each

functional dependency individually.

Explanation:

While both decomposition methods aim to achieve BCNF by eliminating violations, the approach

using the canonical cover treats each functional dependency separately, leading to a more granular

decomposition. In contrast, the original decomposition grouped related dependencies, resulting in

fewer relations. Both decompositions are valid and preserve BCNF, but they differ in their structural

arrangements.

61

CONCLUSION

The analysis of functional dependencies within the relational schema R(A, B, C, D, E, F) highlights

the critical role of normalization in database design. Through the computation of attribute closures,

identification of super keys, and derivation of canonical covers, we established a foundational

understanding of the schema's structure. The subsequent 3NF and BCNF decompositions

demonstrated how to systematically eliminate redundancy and ensure data integrity.

The canonical cover provided a minimal set of functional dependencies, simplifying the

normalization process and aiding in the identification of potential decomposition paths. However,

as evidenced in part f, different decomposition strategies can lead to varied structural outcomes,

each with its own merits in terms of efficiency and complexity.

Ultimately, the exercise underscores the importance of meticulous analysis and methodical

application of normalization principles in designing robust and scalable databases. By adhering to

these practices, database designers can create systems that not only meet current data management

needs but also adapt seamlessly to future demands.

62

REFERENCES

1. Elmasri, R., & Navathe, S. B. (2015). Fundamentals of Database Systems (7th ed.). Pearson.

2. Coronel, C., & Morris, S. (2016). Database Systems: Design, Implementation, & Management

(11th ed.). Cengage Learning.

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2019). Database System Concepts (7th ed.).

McGraw-Hill Education.

4. W3Schools. (2023). SQL Tutorial. Retrieved from

https://www.w3schools.com/sql/

5. Stack Overflow. (2023). Best Practices for Database Design. Retrieved from

[https://stackoverflow.com/questions/1622001/best-practices-for-database-

design](https://stackoverflow.com/questions/1622001/best-practices-for-database-design)

6. MySQL Documentation. (2023). Retrieved from

https://dev.mysql.com/doc/

63

A FIELD PROJECT/IDP REPORT ON

Characteristics of the Database

Submitted partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

CYBER SECURITY

Submitted by

GOGINENI HARI PRASAD (221FA19024)

CHAKRAVARAM KAVYA

HARSHITHA
(221FA19031)

GUTHIKONDA AKHILA (221FA19033)

ADARAPU SANDEEP (221FA19054)

Department of ACSE

School of Computing and Informatics

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH

(Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April, 2024

64

�j �Jo�c� T�lo�R:s�
� (Deemed to be University)

·Estd. u/s 3 of UGC Act 1956

�/

,'

��kM�T��
� I llv' (Deemed tq be unlverslty)

·Eito w's lot UGC. A.ct '956

CERTIFICATE

HoD/ACSE
-

This is to certify that the field project/IDP entitled "Characteristics of the DataBase" being
submitted by GOGINENI HARI PRASAD-221FA19024,CHAKRAVARAM KAVYA
HARSHITHA-221 FA 19031,GUTHIKONDA AKHTLA-221 FA 19033, ADARAPU
SANDEEP - 221FAI 9054 in partial fulfilment of Bachelor ofTechnology in the Department
of Advanced Computer Science and Engineering ,Vignan's Foundation For Science
Technology & Research (Deemed to be University), Vadlamudi, Guntur District, Andhra
Pradesh, India, is a bonafide work carried out by them under my guidance and supervision.

@ii
Dr.Venka�deti .d?

Guide

I

I
I

\

DECLARATION

We hereby declare that our project work described in the field project titled

“Characteristics of the DataBase” which is being submitted by us for the

partial fulfilment in the department of ACSE, Vignan’s Foundation for

Science, Technology and Research (Deemed to be University), Vadlamudi,

Guntur, Andhra Pradesh, and the result of investigations are carried out by us

under the guidance of DR. CH. Rose Rani.

GOGINENI HARI PRASAD 221FA19024

CHAKRAVARAM KAVYA HARSHITHA 221FA19031

GUTHIKONDA AKHILA 221FA19033

ADARAPU SANDEEP 221FA19054

66

VIG NAN'S
(Deemed to be University)

Table of Contents

1. Abstract

2. Database Approach vs. Traditional File Systems

 - 2.1 Characteristics of the Database Approach

 - 2.2 Differences from Traditional File Systems

3. SQL Statement to Create a Student Table

4. ER Diagram and Relational Model for Reality Shows Schema

 - 4.1 ER Diagram for Reality Shows Schema

 - 4.2 Relational Model for Reality Shows Schema

 - 4.3 Constraints in the Relational Model

5. Conclusion

67

Abstract

This report explores various aspects of database systems, highlighting their advantages over

traditional file systems and their application in modeling real-world scenarios. It begins with a

comparison between the database approach and traditional file-based systems, focusing on key

characteristics such as data integrity, reduced redundancy, and improved access to information.

Through a detailed examination, the report explains how the database approach enhances

efficiency by centralizing data management, enforcing consistency, and supporting complex

queries, in contrast to the limited functionality of file systems. The structured analysis

underscores the importance of databases in modern applications where data reliability and

scalability are essential.

Additionally, the report presents practical examples of database concepts, including an SQL

statement for creating a "Student" table and the design of an ER (Entity-Relationship) diagram

for a "Reality Shows" schema. The ER diagram and its corresponding relational model are

further explained with emphasis on the constraints that ensure data integrity within the schema.

This combination of theoretical and practical elements offers a comprehensive view of database

design principles, illustrating how they can be applied to real-world scenarios for effective data

management and organization.

68

2. Database Approach vs. Traditional File Systems

 2.1 Characteristics of the Database Approach

1. Self-Describing Data: Databases store not just data but also the schema (metadata), making

the system self-describing.

2. Integrated Data: Information is collected and organized from various sources, providing a

unified view of data.

3. Data Independence: Applications are not tightly coupled with data structures, allowing data

modifications without affecting dependent applications.

4. Data Security: Robust security features such as access control, encryption, and

authorization ensure protection of sensitive data.

5. Data Integrity: Constraints (e.g., primary keys, foreign keys) and triggers enforce data

accuracy and consistency.

6. Recovery: Mechanisms like backups and transaction logs ensure data recovery in case of

failure.

7. Query Language: SQL, the most commonly used query language, simplifies complex data

retrieval operations.

 2.2 Differences from Traditional File Systems

1. Structure: Databases are organized with a structured schema, while traditional file systems

follow a simple, often hierarchical, structure.

2. Data Relationships: Databases allow intricate relationships between data, unlike file

systems, which lack built-in support for data relationships.

3. Data Sharing: Databases support concurrent access to data by multiple users, whereas file

systems may experience issues with concurrency.

4. Data Integrity: Databases automatically enforce data integrity, while in traditional file

systems, this must be managed at the application level.

69

5. Querying: Complex queries can be executed in databases using SQL, but file systems

require manual data searching.

6. Security: Databases provide advanced security mechanisms, while file systems rely

primarily on the operating system for permission control.

7. Scalability: Databases are optimized for handling large volumes of data, whereas file

systems may face limitations in scaling efficiently.

3. SQL Statement to Create a Student Table

CREATE TABLE student (

 regdno INT PRIMARY KEY,

 firstname VARCHAR(50) NOT NULL,

 lastname VARCHAR(50) NOT NULL,

 birthdate DATE NOT NULL,

 branch VARCHAR(50) NOT NULL,

 address VARCHAR(200) NOT NULL

);

This SQL statement creates a `student` table with attributes for `regdno`, `firstname`,

`lastname`, `birthdate`, `branch`, and `address`. The primary key ensures uniqueness for each

student.

70

4. ER Diagram and Relational Model for Reality Shows Schema

 4.1 ER Diagram for Reality Shows Schema

The ER diagram for the reality show schema includes entities like `Producer`, `Show`,

`Television`, and `User`. The relationships involve:

- One-to-One between `Producer` and `Show`.

- One-to-Many between `Television` and `Show`.

- Many-to-Many between `User` and `Show` through `Rating`.

 4.2 Relational Model for Reality Shows Schema

1. Producer Table:

 CREATE TABLE Producer (

 producer_id INT PRIMARY KEY,

 company_name VARCHAR(50) NOT NULL,

 company_country VARCHAR(50) NOT NULL

);

71

Televlslon
------------------------�

Show
----- - -- - - -- -- - -- --- ----

1-------'-N'--<e•,o,dm;;- , >----''----j �""T""...,.., ',----,-�,

•

Com_name

N

Rating

N

s_year

User

H_omce

age

: password
•· - - - - - - - - - . - - .. - •.• - .. - - . - - - - - - - - - - - - - -A ..•.... - - - . - - - - - - . - •.••• � - - . - - - - - I

2. Show Table:

 CREATE TABLE Show (

 show_id INT PRIMARY KEY,

 producer_id INT NOT NULL,

 FOREIGN KEY (producer_id) REFERENCES Producer(producer_id)

);

3. Television Table:

 CREATE TABLE Television (

 television_id INT PRIMARY KEY,

 name VARCHAR(50) NOT NULL,

 start_year INT NOT NULL,

 head_office VARCHAR(50) NOT NULL

);

4. Broadcast Table:

 CREATE TABLE Broadcast (

 show_id INT NOT NULL,

 television_id INT NOT NULL,

 PRIMARY KEY (show_id, television_id),

 FOREIGN KEY (show_id) REFERENCES Show(show_id),

 FOREIGN KEY (television_id) REFERENCES Television(television_id)

);

72

5. User Table:

 CREATE TABLE User (

 user_id INT PRIMARY KEY,

 username VARCHAR(50) NOT NULL,

 password VARCHAR(50) NOT NULL,

 age INT NOT NULL

);

6. Rating Table:

 CREATE TABLE Rating (

 user_id INT NOT NULL,

 show_id INT NOT NULL,

 score INT NOT NULL CHECK (score BETWEEN 0 AND 10),

 PRIMARY KEY (user_id, show_id),

 FOREIGN KEY (user_id) REFERENCES User(user_id),

 FOREIGN KEY (show_id) REFERENCES Show(show_id)

);

 4.3 Constraints in the Relational Model

- Primary Key: Uniquely identifies each record in the tables (`producer_id`, `show_id`,

`television_id`, `user_id`).

- Foreign Key: Maintains referential integrity between tables. For instance, `producer_id` in

`Show` references `producer_id` in `Producer`.

- One-to-One (1:1): A producer produces exactly one show, and each show is produced by

exactly one producer.

- One-to-Many (1:N): A television may broadcast multiple shows, but each show is

broadcasted by only one television.

73

- Many-to-Many (N:M): A user can rate multiple shows, and each show can be rated by

multiple users.

5. Conclusion

This document highlights the advantages of the database approach over traditional file systems

in terms of data integrity, security, and scalability. Additionally, it provides SQL syntax for

creating tables and a detailed relational model for a reality show schema, including various

entity relationships and constraints. This ensures efficient database design and management.

74

A FIELD PROJECT/IDP REPORT ON

Functional dependencies

Submitted partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

CYBER SECURITY

Submitted by

Department of ACSE

School of Computing and Informatics

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH

(Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April, 2024

DESAMALA RAJ ARYAN (221FA19007)

KAMINENI BABY TEJASWI (221FA19047)

GANTA SUNDEEP (221FA19049)

KONJETI KARTHIK SAI (231LA19001)

75

VIG NAN'S
Foundation for Science, Technology & Research

(Deemed to be University)
-Estd. u/s 3 of UGC Act 1956

VIG NAN'S
(Deemed to be l,}niversity)

•F.ll4 ull lot occ .t.ct t9!'6

CERTIFICATE

This is to certify that the field project/IDP entitled "Functional dependencies" being
submitted by DESAMALA RAJ ARYAN-221FAl9007,KAMINENI BABY TEJASWI-
221FAl9047,GANTA SUNDEEP-221FAl9049, KONJETI KARTHIK SAi�
231LAl9001 in partial fulfilment of Bachelor of Technology in the Department of
Advanced Computer Science and Engineering, Vignan's Foundation For Science
Technology & Research (Deemed to be University), Vadlamudi, Guntur District, Andhra
Pradesh, India, is a bonafide work carried out by them under my guidance and
supervision.

HoD/ACSE
Dr.Venkatesulu Dondeti

DECLARATION

We hereby declare that our project work described in the field project titled “Functional

dependencies” which is being submitted by us for the partial fulfilment in the department of

ACSE, Vignan’s Foundation for Science, Technology and Research (Deemed to be

University), Vadlamudi, Guntur, Andhra Pradesh, and the result of investigations are carried

out by us under the guidance of Dr. CH. Rose Rani.

DESAMALA RAJ ARYAN 221FA19007

KAMINENI BABY TEJASWI 221FA19047

GANTA SUNDEEP 221FA19049

KONJETI KARTHIK SAI 231LA19001

77

VIG NAN'S
(Deemed to be University)

Table of Contents

1. Abstract

2. Introduction

3. Functional Dependencies in DISK_DRIVE Relation

 - 3.1 a. Manufacturer and Serial Number Uniquely Identify the Drive

 - 3.2 b. Model Number is Registered by a Manufacturer

 - 3.3 c. All Disk Drives in a Particular Batch are the Same Model

 - 3.4 d. Capacity is Determined by Manufacturer and Model

 - 3.5 e. Normalization of DISK_DRIVE Relation

4. Conclusion

5. References

78

1. Abstract

This report explores the concept of functional dependencies (FDs) and the process of

normalization within the context of a relational database schema. Using the `DISK_DRIVE`

relation as a case study, we identify and articulate various functional dependencies,

subsequently applying normalization techniques to enhance the database's efficiency and

integrity. The analysis covers the transformation of the initial schema through First Normal

Form (1NF) to Boyce-Codd Normal Form (BCNF), detailing each step and the rationale behind

decompositions. The report underscores the importance of normalization in minimizing

redundancy, preventing anomalies, and ensuring data consistency, thereby facilitating robust

database design.

79

2. Introduction

In relational database management systems (RDBMS), the organization and integrity of data

are paramount. Functional dependencies serve as fundamental constraints that define how

attributes within a table relate to one another. Understanding and accurately modeling these

dependencies are critical for effective database normalization—a systematic process aimed at

reducing data redundancy and enhancing data integrity.

Normalization involves decomposing a table into smaller, related tables without loss of data,

ensuring that each table adheres to specific normal forms. This process not only streamlines

data storage but also optimizes query performance and simplifies maintenance. This report

delves into the application of functional dependencies and normalization techniques on the

`DISK_DRIVE` relation, demonstrating the transition from an unnormalized schema to a fully

normalized database structure.

Through the application of functional dependencies, this report illustrates how to identify and

address potential data anomalies, such as insertion, deletion, and update anomalies, which can

arise from poor schema design. By analyzing the functional dependencies within the

`DISK_DRIVE` relation, the report guides the reader through the process of determining

attribute closures, identifying candidate keys, and applying normalization techniques to

achieve Third Normal Form (3NF) and Boyce-Codd Normal Form (BCNF). These

normalization stages ensure that each table represents a clear, non-redundant relationship

among attributes, enhancing the overall efficiency and consistency of the database. This

structured approach ultimately leads to a more robust and scalable relational database design,

better suited to support complex queries and evolving business requirements.

80

3. Functional Dependencies in DISK_DRIVE Relation

The `DISK_DRIVE` relation is defined as:

DISK_DRIVE (Serial_number, Manufacturer, Model, Batch, Capacity, Retailer)

Each tuple in this relation uniquely identifies a disk drive with attributes detailing its serial

number, manufacturer, model, batch, capacity, and retailer.

 3.1 a. Manufacturer and Serial Number Uniquely Identify the Drive

Functional Dependency:

- FD1: (Manufacturer, Serial_number) → Model, Batch, Capacity, Retailer

Explanation:

The combination of `Manufacturer` and `Serial_number` uniquely determines all other

attributes of the disk drive. This means that for a given manufacturer and serial number, there

is exactly one corresponding model, batch, capacity, and retailer.

 3.2 b. Model Number is Registered by a Manufacturer

Functional Dependency:

- FD2: Model → Manufacturer

Explanation:

A `Model` number is uniquely registered by a single `Manufacturer`. This implies that the

same model number cannot be used by different manufacturers, ensuring that the model

number is inherently tied to its manufacturer.

 3.3 c. All Disk Drives in a Particular Batch are the Same Model

Functional Dependency:

- FD3: Batch → Model

81

Explanation:

Every disk drive within a specific `Batch` shares the same `Model`. This dependency ensures

consistency in the model attribute for all drives released in the same manufacturing batch.

 3.4 d. Capacity is Determined by Manufacturer and Model

Functional Dependency:

- FD4: (Manufacturer, Model) → Capacity

Explanation:

The `Capacity` of a disk drive is exclusively determined by its `Manufacturer` and `Model`.

This means that for a given manufacturer and model combination, there is a fixed storage

capacity associated with it.

 3.5 e. Normalization of DISK_DRIVE Relation

Objective:

Apply normalization to the `DISK_DRIVE` relation to eliminate redundancy and ensure data

integrity by decomposing it into higher normal forms.

Given Relation:

DISK_DRIVE (Serial_number, Manufacturer, Model, Batch, Capacity, Retailer)

Functional Dependencies Identified:

- FD1: (Manufacturer, Serial_number) → Model, Batch, Capacity, Retailer

- FD2: Model → Manufacturer

- FD3: Batch → Model

- FD4: (Manufacturer, Model) → Capacity

82

Normalization Steps:

1. First Normal Form (1NF):

 - Criteria: All attributes contain only atomic (indivisible) values.

 - Assessment: The `DISK_DRIVE` relation is already in 1NF as each attribute holds atomic

values.

2. Second Normal Form (2NF):

 - Criteria: The relation is in 1NF and all non-prime attributes are fully functionally

dependent on the primary key.

 - Primary Key Identification: Based on FD1, the primary key is (Manufacturer,

Serial_number).

 - Assessment: All non-prime attributes (Model, Batch, Capacity, Retailer) are fully

functionally dependent on the entire primary key. There are no partial dependencies.

 - Conclusion: The relation satisfies 2NF.

3. Third Normal Form (3NF):

 - Criteria: The relation is in 2NF and all the attributes are functionally independent of any

other non-prime attribute (elimination of transitive dependencies).

 - Assessment:

 - Transitive Dependency:

 - From FD2: Model → Manufacturer

 - This implies a transitive dependency since (Manufacturer, Serial_number) → Model,

and Model → Manufacturer.

 - Violation: The relation violates 3NF due to the transitive dependency.

 - Decomposition to Achieve 3NF:

 - Step 1: Remove the transitive dependency by creating a separate relation for the

dependent attributes.

83

 - Relation 1: `DISK_DRIVE_CORE (Manufacturer, Serial_number, Model, Batch,

Capacity, Retailer)`

 - Relation 2: `MODEL_MANUFACTURER (Model, Manufacturer)`

 - Resulting Relations:

 - DISK_DRIVE_CORE:

 DISK_DRIVE_CORE (Manufacturer, Serial_number, Model, Batch, Capacity,

Retailer)

 - MODEL_MANUFACTURER:

 MODEL_MANUFACTURER (Model, Manufacturer)

 - Verification:

 - Both relations are now in 3NF as there are no transitive dependencies remaining.

4. Boyce-Codd Normal Form (BCNF):

 - Criteria: The relation is in BCNF if for every one of its non-trivial functional

dependencies X → Y, X is a super key.

 - Assessment of `DISK_DRIVE_CORE`:

 - FD1: (Manufacturer, Serial_number) → Model, Batch, Capacity, Retailer

 - (Manufacturer, Serial_number) is a super key.

 - FD3: Batch → Model

 - Batch is not a super key.

 - Violation: This FD violates BCNF.

 - Decomposition to Achieve BCNF:

84

 - Step 1: Decompose based on the violating FD3.

 - Relation 3: `BATCH_MODEL (Batch, Model)`

 - Relation 4: `DISK_DRIVE_CORE_UPDATED (Manufacturer, Serial_number, Batch,

Capacity, Retailer)`

 - Resulting Relations:

 - BATCH_MODEL:

 BATCH_MODEL (Batch, Model)

 - DISK_DRIVE_CORE_UPDATED:

 DISK_DRIVE_CORE_UPDATED (Manufacturer, Serial_number, Batch, Capacity,

Retailer)

 - Verification:

 - BATCH_MODEL:

 - Batch → Model

 - Batch is a super key for this relation.

 - DISK_DRIVE_CORE_UPDATED:

 - (Manufacturer, Serial_number) → Batch, Capacity, Retailer

 - (Manufacturer, Serial_number) is a super key.

 - Both relations satisfy BCNF.

5. Final Normalized Relations:

 - MODEL_MANUFACTURER:

85

 MODEL_MANUFACTURER (Model, Manufacturer)

 - BATCH_MODEL:

 BATCH_MODEL (Batch, Model)

 - DISK_DRIVE_CORE_UPDATED:

 DISK_DRIVE_CORE_UPDATED (Manufacturer, Serial_number, Batch, Capacity,

Retailer)

Reasons Behind Each Decomposition:

- Elimination of Transitive Dependencies:

 To achieve 3NF, transitive dependencies were removed by segregating attributes that

depended on non-key attributes into separate relations.

- Ensuring Super Key Determinants:

 For BCNF, any functional dependency where the determinant is not a super key was

addressed by decomposing the relation further, ensuring that all determinants are super keys.

- Minimizing Redundancy and Enhancing Integrity:

 Decomposing the original relation into smaller, focused relations minimizes data

redundancy and enhances data integrity by ensuring that each piece of information is stored

only once.

86

4. Conclusion

Functional dependencies and normalization are pivotal in the design of efficient and reliable

relational databases. Through the analysis of the ̀ DISK_DRIVE` relation, we identified critical

functional dependencies that influenced the normalization process. Starting from an

unnormalized schema, we systematically decomposed the relation to eliminate redundancy and

ensure data integrity, progressing through First Normal Form (1NF) to Boyce-Codd Normal

Form (BCNF).

Each normalization step addressed specific types of dependencies:

- 1NF ensured atomicity of data.

- 2NF eliminated partial dependencies.

- 3NF addressed transitive dependencies.

- BCNF enforced that all determinants are super keys.

The final normalized schema comprises three relations: `MODEL_MANUFACTURER`,

`BATCH_MODEL`, and `DISK_DRIVE_CORE_UPDATED`. This decomposition not only

minimizes data redundancy but also enhances the database's scalability and maintainability.

The process underscores the importance of understanding functional dependencies and

applying normalization principles to achieve an optimal database design.

87

5. References

1. Elmasri, R., & Navathe, S. B. (2015). Fundamentals of Database Systems (7th ed.).

Pearson.

2. Coronel, C., & Morris, S. (2016). Database Systems: Design, Implementation, &

Management (11th ed.). Cengage Learning.

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2019). Database System Concepts (7th

ed.). McGraw-Hill Education.

4. W3Schools. (2023). SQL Tutorial. Retrieved from

https://www.w3schools.com/sql/

5. Stack Overflow. (2023). Best Practices for Database Design. Retrieved from

[https://stackoverflow.com/questions/1622001/best-practices-for-database-

design](https://stackoverflow.com/questions/1622001/best-practices-for-database-design)

6. MySQL Documentation. (2023). Retrieved from

https://dev.mysql.com/doc/

88

A FIELD PROJECT/IDP REPORT ON

Entity-Relationship (ER) Diagram

Submitted partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

CYBER SECURITY

Submitted by

TIYYAGURA VENKATA SHESHA

SHAINA REDDY
(221FA19003)

DHULIPALLA GEETHIKA SAI (221FA19011)

ISUKAPALLI VENKATA MYTHREYA

KUMARA SARMA
(221FA19018)

CHIMATA OMKAR LAKSHMI (221FA19060)

Department of ACSE

School of Computing and Informatics

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH

(Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April, 2024

89

�j YJo�c� T�lo�:.,�
� (Deemed to be University)

-Estd. u/s 3 of UGC Act 1956

VIGNAN'S
F�l,on for Sclenct. Technology & RHHtdl

(Deemed to be University)
·E,td � J or I.JGC Act 1956

CERTIFICATE

This is to certify that the field project/IDP entitled "Entity-Relationship (ER) Diagram" being
submitted by TIYY A GURA VENKA TA SHESHA SHAINA REDDY-
221FA19003,DHULIPALLA GEETHIKA SAI-221FA1901 l,ISUKAPALLI VENKATA
-MYTH°REYA KUM.A.RA SARMA-221FA19018 CHIMATA OMKAR .LAKSHMi-

' 221FA19060 in partial fulfilment of Bachelor of Technology in the Department of Advanced
Computer Science and Engineering, Vignan's Foundation For Science Technology &
Research (Deemed to be University), Vadlamudi, Guntur District, Andhra Pradesh, India, is
a bonafide work carried out by them under mr !fWdance and supervision.

Guide

Dr.Venkatesulu Dondeti

HoD/ACSE

DECLARATION

We hereby declare that our project work described in the field project titled “Entity-

Relationship (ER) Diagram” which is being submitted by us for the partial fulfilment in the

department of ACSE, Vignan’s Foundation for Science, Technology and Research (Deemed

to be University), Vadlamudi, Guntur, Andhra Pradesh, and the result of investigations are

carried out by us under the guidance of Dr. CH. Rose Rani.

TIYYAGURA VENKATA SHESHA

SHAINA REDDY
221FA19003

DHULIPALLA GEETHIKA SAI 221FA19011

ISUKAPALLI VENKATA

MYTHREYA KUMARA SARMA
221FA19018

CHIMATA OMKAR LAKSHMI 221FA19060

91

VIG NAN'S
(Deemed to be University)

Table of Contents

1. Abstract

2. Introduction

3. Entity-Relationship (ER) Diagram Design

 - 3.1 Entities and Attributes

 - 3.2 Relationships and Constraints

4. Relational Model and SQL Implementation

 - 4.1 Relational Tables

 - 4.2 SQL Statements for Table Creation and Data Insertion

 - 4.3 Explanation of Deletion Methods

5. Conclusion

6. References

92

1. Abstract

This report presents the design and implementation of a relational database system intended to

digitize time card submissions and approvals within a company. The design process

encompasses the creation of an Entity-Relationship (ER) diagram that encapsulates the key

entities, their attributes, and the relationships among them, along with the necessary constraints

to ensure data integrity. Following the ER diagram, the report outlines the corresponding

relational model and provides SQL statements to create and populate the database tables.

Additionally, the report explains various deletion methods to manage data effectively. The

proposed database system aims to streamline the time card management process, enhance data

accuracy, and facilitate efficient approval workflows.

93

2. Introduction

In modern organizational environments, managing employee time cards efficiently is critical

to ensuring accurate payroll processing, tracking performance, and optimizing resource

allocation. Traditional paper-based systems, while familiar, are often fraught with errors, time

delays, and difficulty in retrieving and analyzing data. These challenges can lead to payroll

inaccuracies, compliance issues, and increased administrative overhead. To overcome these

inefficiencies, organizations are increasingly turning to digitized systems that automate time

card submissions and approvals, providing real-time insights and reducing manual

intervention. A well-designed database system can streamline this process, improving data

accuracy and enabling better decision-making.

This report outlines the design of a comprehensive database system for managing employee

time cards, capturing essential information such as employee details, managerial approvals,

and time card records. By employing relational database principles, the system ensures data

integrity through well-defined relationships and constraints, such as primary and foreign keys,

to prevent redundancy and maintain consistency. Additionally, the system enhances security

by controlling access to sensitive information, ensuring only authorized personnel can submit

or approve time cards. Scalability is another key advantage, allowing the system to grow with

the organization's needs while maintaining optimal performance. Ultimately, this digital

approach not only improves operational efficiency but also provides a reliable foundation for

long-term data management and business growth..

94

3. Entity-Relationship (ER) Diagram Design

 3.1 Entities and Attributes

The database design involves three primary entities: Employee, Manager, and TimeCard.

Each entity is defined with its respective attributes, including primary keys to ensure

uniqueness.

1. Employee

 - Attributes:

 - `Employee_ID` (Primary Key): Unique identifier for each employee.

 - `Name`: Full name of the employee.

 - `Address`: Residential address of the employee.

 - `Payment_Method`: Method of payment (`Direct Deposit` or `Physical Check`).

 - `Manager_ID` (Foreign Key): References the `Manager` entity.

2. Manager

 - Attributes:

 - `Manager_ID` (Primary Key): Unique identifier for each manager.

 - `Name`: Full name of the manager.

3. TimeCard

 - Attributes:

 - `TimeCard_ID` (Primary Key): Unique identifier for each time card.

 - `Employee_ID` (Foreign Key): References the `Employee` entity.

 - `Hours_Worked`: Number of hours worked during the pay period.

 - `Date_Submitted`: Date when the time card was submitted.

 - `Status`: Current status of the time card (`Approved`, `Not Approved`, `Pending`).

95

 3.2 Relationships and Constraints

The relationships between the entities are defined to capture the business rules and ensure

data integrity.

1. Employee-Manager Relationship

 - Type: Many-to-One

 - Description: Each employee is associated with exactly one manager, while a manager can

oversee multiple employees.

 - Constraints:

 - Foreign Key: `Employee.Manager_ID` references `Manager.Manager_ID`.

 - Participation: Mandatory on the employee side (every employee must have a manager).

2. Employee-TimeCard Relationship

 - Type: One-to-Many

 - Description: Each employee submits multiple time cards every pay period, whereas each

time card is associated with exactly one employee.

 - Constraints:

 - Foreign Key: `TimeCard.Employee_ID` references `Employee.Employee_ID`.

 - Participation: Mandatory on the time card side (every time card must be linked to an

employee).

3. Manager-TimeCard Relationship

 - Type: One-to-Many

 - Description: Each manager can approve multiple time cards, while each time card is

approved by exactly one manager.

 - Constraints:

 - Foreign Key: `TimeCard.Manager_ID` references `Manager.Manager_ID`.

 - Participation: Optional on the manager side (a time card may not yet be approved).

96

ER Diagram:

97

EIIIW\11

4. Relational Model and SQL Implementation

 4.1 Relational Tables

Based on the ER diagram, the relational model consists of three primary tables: `Manager`,

`Employee`, and `TimeCard`. Each table includes attributes and constraints to enforce data

integrity.

1. Manager Table

 - Columns:

 - `Manager_ID` INT PRIMARY KEY AUTO_INCREMENT

 - `Name` VARCHAR(100) NOT NULL

2. Employee Table

 - Columns:

 - `Employee_ID` INT PRIMARY KEY AUTO_INCREMENT

 - `Name` VARCHAR(100) NOT NULL

 - `Address` VARCHAR(255) NOT NULL

 - `Payment_Method` ENUM('Direct Deposit', 'Physical Check') NOT NULL

 - `Manager_ID` INT NOT NULL

 - Constraints:

 - FOREIGN KEY (`Manager_ID`) REFERENCES `Manager`(`Manager_ID`)

3. TimeCard Table

 - Columns:

 - `TimeCard_ID` INT PRIMARY KEY AUTO_INCREMENT

 - `Employee_ID` INT NOT NULL

 - `Hours_Worked` DECIMAL(5,2) NOT NULL

 - `Date_Submitted` DATE NOT NULL

 - `Status` ENUM('Approved', 'Not Approved', 'Pending') NOT NULL

 - `Manager_ID` INT

98

 - Constraints:

 - FOREIGN KEY (`Employee_ID`) REFERENCES `Employee`(`Employee_ID`)

 - FOREIGN KEY (`Manager_ID`) REFERENCES `Manager`(`Manager_ID`)

 4.2 SQL Statements for Table Creation and Data Insertion

The following SQL statements create the necessary tables and insert sample data into each

table.

-- Create Database

CREATE DATABASE company;

USE company;

-- Create Manager Table

CREATE TABLE Manager (

 Manager_ID INT PRIMARY KEY AUTO_INCREMENT,

 Name VARCHAR(100) NOT NULL

);

-- Insert Sample Data into Manager Table

INSERT INTO Manager (Name) VALUES

('Alice Johnson'),

('Bob Smith'),

('Carol Williams');

-- Create Employee Table

CREATE TABLE Employee (

 Employee_ID INT PRIMARY KEY AUTO_INCREMENT,

 Name VARCHAR(100) NOT NULL,

 Address VARCHAR(255) NOT NULL,

 Payment_Method ENUM('Direct Deposit', 'Physical Check') NOT NULL,

 Manager_ID INT NOT NULL,

99

 FOREIGN KEY (Manager_ID) REFERENCES Manager(Manager_ID)

);

-- Insert Sample Data into Employee Table

INSERT INTO Employee (Name, Address, Payment_Method, Manager_ID) VALUES

('John Smith', '123 Maple St, Springfield, IL', 'Direct Deposit', 1),

('Emily Johnson', '456 Oak Ave, Springfield, IL', 'Physical Check', 1),

('Michael Brown', '789 Pine Rd, Springfield, IL', 'Direct Deposit', 2);

-- Create TimeCard Table

CREATE TABLE TimeCard (

 TimeCard_ID INT PRIMARY KEY AUTO_INCREMENT,

 Employee_ID INT NOT NULL,

 Hours_Worked DECIMAL(5,2) NOT NULL,

 Date_Submitted DATE NOT NULL,

 Status ENUM('Approved', 'Not Approved', 'Pending') NOT NULL,

 Manager_ID INT,

 FOREIGN KEY (Employee_ID) REFERENCES Employee(Employee_ID),

 FOREIGN KEY (Manager_ID) REFERENCES Manager(Manager_ID)

);

-- Insert Sample Data into TimeCard Table

INSERT INTO TimeCard (Employee_ID, Hours_Worked, Date_Submitted, Status,

Manager_ID) VALUES

(1, 40.0, '2024-08-15', 'Approved', 1),

(2, 35.5, '2024-08-15', 'Pending', 1),

(3, 42.0, '2024-08-16', 'Not Approved', 2);

100

101

I Grid I Im
Dm�_ID

·.
� .John Smith

Emily .Johnson
M�Bl"O'Nn

Gl!lD

I - Grid 11!1 t� Fhr """" !Edi,' E,po\ll"l"'I• l!Q I I
Oll')ytt_lD Name Adcress Palff"!ll.Melhxl Molager JD

• IOI lmllo! Ill Mai1 Sl,5i>'i11fi!II, n !l!ct O!pool I

�

8Myldm,n 456 oak Ave,Spt,gf,eld, n Ph)'ial 0-.d< l
l l'ichao �""' m Pi'lt Rd,Si>'i11fi<II, n !l!ct O!poot l

• t:m cm cm mi

I Result Grid l!ll t� Filr """' Edi, Ir!@! � I E,pcl\ll� fi 11
TrreC�d ID l'IIJl>ye, _ ID lb.ls. Woled Date �tted s�rus �-ID

• 111111 IOI !J 'IJ.1111 lll2408· IS �oved I
111112 102 JS.SO lll2408· 16 Nol�oved 2
111113 103 JS.Oil lll24-0ll·lll l'e"'l J

• cm cm cm cm cm

Explanation:

1. Database Creation:

 - The `company` database is created and selected for subsequent operations.

2. Manager Table:

 - The `Manager` table includes `Manager_ID` as the primary key and `Name` as a

mandatory attribute.

 - Sample managers are inserted with names Alice Johnson, Bob Smith, and Carol

Williams.

3. Employee Table:

 - The `Employee` table includes `Employee_ID` as the primary key.

 - Each employee has a `Name`, `Address`, `Payment_Method`, and is associated with a

`Manager_ID`.

 - Sample employees John Smith, Emily Johnson, and Michael Brown are inserted, linked

to their respective managers.

4. TimeCard Table:

 - The `TimeCard` table includes `TimeCard_ID` as the primary key.

 - Each time card records the `Employee_ID`, `Hours_Worked`, `Date_Submitted`,

`Status`, and optionally the `Manager_ID` who approved it.

 - Sample time cards are inserted for the employees.

 4.3 Explanation of Deletion Methods

Managing data effectively involves understanding how to delete records without

compromising data integrity. Below are examples of deletion methods in the context of the

designed database.

1. Delete a Manager:

 Scenario: Remove a manager from the database.

 -- Attempt to delete Manager with Manager_ID = 1

 DELETE FROM Manager WHERE Manager_ID = 1;

102

 Explanation:

 - Referential Integrity: This operation will fail if there are employees associated with

`Manager_ID = 1` due to the foreign key constraint.

 - Solution: Use `ON DELETE CASCADE` when defining foreign keys if you want to

automatically delete related employees, or handle deletions manually.

2. Delete a Specific Employee:

 Scenario: Remove an employee from the database.

 DELETE FROM Employee WHERE Employee_ID = 2;

 Explanation:

 - Referential Integrity: Time cards associated with `Employee_ID = 2` will remain unless

handled appropriately.

 - Solution: Use `ON DELETE CASCADE` on the `TimeCard` table's foreign key or delete

related time cards manually before deleting the employee.

3. Delete All TimeCards Submitted on a Specific Date:

 Scenario: Remove all time cards submitted on '2024-08-15'.

 DELETE FROM TimeCard WHERE Date_Submitted = '2024-08-15';

 Explanation:

 - This command deletes all records in the `TimeCard` table where `Date_Submitted`

matches the specified date.

4. Delete a Manager and All Associated Employees (Cascade Delete):

 Scenario: Remove a manager and all employees under their supervision.

 -- Assuming foreign keys are set with ON DELETE CASCADE

 DELETE FROM Manager WHERE Manager_ID = 2;

 Explanation:

103

 - Cascade Delete: If the foreign key in the `Employee` table is defined with `ON DELETE

CASCADE`, deleting a manager will automatically delete all associated employees.

 - Without Cascade: Manually delete employees before deleting the manager.

5. Delete All TimeCards of a Specific Employee:

 Scenario: Remove all time cards submitted by employee with `Employee_ID = 3`.

 DELETE FROM TimeCard WHERE Employee_ID = 3;

 Explanation:

 - This command deletes all time card records associated with `Employee_ID = 3`.

6. Delete All Records from a Table:

 Scenario: Remove all records from the `TimeCard` table.

 DELETE FROM TimeCard;

 Explanation:

 - This command deletes every record in the `TimeCard` table, effectively emptying it.

104

5. Conclusion

The design and implementation of a relational database system for managing time cards have

been meticulously outlined in this report. By leveraging the Entity-Relationship (ER) model,

we effectively captured the essential entities—Employee, Manager, and TimeCard—and their

interrelationships, ensuring that all business rules and constraints were accurately represented.

The relational model translated these designs into structured tables with appropriate primary

and foreign keys, facilitating robust data integrity and efficient data retrieval.

The SQL statements provided establish the foundational database structure, enabling the

creation of tables and insertion of sample data to simulate real-world scenarios. Additionally,

the explanation of various deletion methods underscores the importance of maintaining

referential integrity and handling data dependencies thoughtfully to prevent inconsistencies.

Overall, the proposed database system offers a scalable and secure solution for digitizing time

card management, enhancing operational efficiency, and supporting informed decision-making

within the company. Future enhancements could include implementing advanced security

measures, optimizing query performance, and integrating user-friendly interfaces for seamless

interaction with the database.

105

6. References

1. Elmasri, R., & Navathe, S. B. (2015). Fundamentals of Database Systems (7th ed.).

Pearson.

2. Coronel, C., & Morris, S. (2016). Database Systems: Design, Implementation, &

Management (11th ed.). Cengage Learning.

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2019). Database System Concepts (7th

ed.). McGraw-Hill Education.

4. W3Schools. (2023). SQL Tutorial. Retrieved from

https://www.w3schools.com/sql/

5. Stack Overflow. (2023). Best Practices for Database Design. Retrieved from

[https://stackoverflow.com/questions/1622001/best-practices-for-database-

design](https://stackoverflow.com/questions/1622001/best-practices-for-database-design)

6. MySQL Documentation. (2023). Retrieved from

https://dev.mysql.com/doc/

106

A FIELD PROJECT/IDP REPORT ON

RDBMS

Submitted partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

CYBER SECURITY

Submitted by

Department of ACSE

School of Computing and Informatics

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH

(Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April, 2024

YALAMARTHI MAHESWARI (221FA19017)

ATMURI RAMA DEVI (221FA19043)

BARU CHARAN (221FA19058)

DIPESH KUMAR KUSHWAHA (221FA19067)

107

VIG NAN'S
Foundation for Science, Technology & Research

(Deemed to be University)
-Estd. u/s 3 of UGC Act 1956

VIG NAN'S
fcv,detlon fot Sciera. Tecl'lnC)iogy I RflHl'Ch

(Deemed \<? be University)
·[\Id w\ l of UGC Act '956

CERTIFICATE

This is to certify that the field project/IDP entitled "RDBMS" being submitted by
YALAMARTHI MAHESWARI-221FA19017, ATMURI RAMA DEVI
221FA19043, BARU CHARAN-221FAl9058,DIPESHKUMARKUSHWAHA�
221FAI 9067 in partial fulfilment of Bachelor of Technology in the Department of
Advanced Computer Science and Engineering, Vignan's Foundation For Science
Technology & Research (Deemed to be University), Vadlamudi, Guntur District,
Andhra Pradesh, India, is a bonafide work carried out by them under my guidance
and supervision.

Dr.Venkatesulu Dondeti

HoD/ACSE

DECLARATION

We hereby declare that our project work described in the field project titled “RDBMS” which

is being submitted by us for the partial fulfilment in the department of ACSE, Vignan’s

Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi,

Guntur, Andhra Pradesh, and the result of investigations are carried out by us under the

guidance of Dr. CH. Rose Rani.

YALAMARTHI

MAHESWARI
221FA19017

ATMURI RAMA DEVI 221FA19043

BARU CHARAN 221FA19058

DIPESH KUMAR

KUSHWAHA
221FA19067

109

VIG NAN'S
(Deemed to be University)

Table of Contents

1. Abstract

2. Introduction

3. Entity-Relationship (ER) Diagram Design

 - 3.1 Entities and Attributes

 - 3.2 Relationships and Constraints

4. Relational Model and SQL Implementation

 - 4.1 Relational Tables

 - 4.2 SQL Statements for Table Creation and Data Insertion

5. Conclusion

6. References

110

1. Abstract

This report outlines the design and implementation of a relational database for an online retail

store aiming to manage its operations efficiently. The design process encompasses the creation

of an Entity-Relationship (ER) diagram to visualize entities, attributes, and relationships,

followed by the development of a relational model with corresponding SQL statements for

table creation and data manipulation. The database design addresses key business requirements,

ensuring data integrity, minimizing redundancy, and facilitating scalable operations. Through

systematic normalization, the database achieves optimal structure, supporting robust data

management and streamlined business processes.

111

2. Introduction

A database is a structured collection of data that is stored and managed to allow for efficient

retrieval, manipulation, and organization. It can be likened to a highly organized digital filing

cabinet where information is stored in tables, making it easy to find and use.

- Tables: Databases often use tables to organize data. Each table consists of rows and columns.

Rows (or records) represent individual entries, while columns (or fields) represent attributes of

those entries.

- Schema: The schema is the blueprint of the database. It defines the structure of the tables,

including the columns, data types (like text, numbers, dates), and the relationships between

tables.

- Relationships: In relational databases, tables can be related to each other. For example, a table

for orders might be related to a table for customers. Relationships are established using keys.

A primary key uniquely identifies each record in a table, while a foreign key is a field in one

table that links to the primary key in another table.

 Online Retail Store Database

An online retail store seeks to design a database to manage its operations effectively. The key

requirements and corresponding solutions are as follows:

 a. Customer Information

- Attributes:

 - `Customer_ID` (Primary Key): Unique identifier for each customer.

 - `Name`: Name of the customer.

 - `Email`: Email address of the customer.

 - `Phone_Number`: Phone number of the customer. (Customers may share the same phone

number.)

 b. Product Information

- Attributes:

 - `Product_ID` (Primary Key): Unique identifier for each product.

 - `Name`: Name of the product.

112

 - `Description`: Description of the product.

 - `Price`: Price of the product.

 c. Order Information

- Attributes:

 - `Order_ID` (Primary Key): Unique identifier for each order.

 - `Order_Date`: Date when the order was placed.

 - `Total_Amount`: Total amount of the order.

 - `Customer_ID` (Foreign Key): References the customer who placed the order.

 d. Order-Product Relationship

- Description: Each order can contain multiple products, and each product can appear in

multiple orders.

- Type: Many-to-Many relationship.

 e. Supplier Information

- Attributes:

 - `Supplier_ID` (Primary Key): Unique identifier for each supplier.

 - `Name`: Name of the supplier.

 - `Contact_Name`: Contact person at the supplier.

 - `Phone_Number`: Phone number of the supplier.

 f. Warehouse Information

- Attributes:

 - `Warehouse_ID` (Primary Key): Unique identifier for each warehouse.

 - `Location`: Location of the warehouse.

 - `Capacity`: Storage capacity of the warehouse.

113

3. Entity-Relationship (ER) Diagram Design

3.1 Entities and Attributes

The ER diagram for the online retail store database includes the following entities:

1. Customer

 - Attributes:

 - `Customer_ID` (Primary Key)

 - `Name`

 - `Email`

 - `Phone_Number`

2. Product

 - Attributes:

 - `Product_ID` (Primary Key)

 - `Name`

 - `Description`

 - `Price`

3. Order

 - Attributes:

 - `Order_ID` (Primary Key)

 - `Order_Date`

 - `Total_Amount`

 - `Customer_ID` (Foreign Key)

4. Supplier

 - Attributes:

 - `Supplier_ID` (Primary Key)

 - `Name`

114

 - `Contact_Name`

 - `Phone_Number`

5. Warehouse

 - Attributes:

 - `Warehouse_ID` (Primary Key)

 - `Location`

 - `Capacity`

6. Order_Product (Associative Entity)

 - Attributes:

 - `Order_ID` (Foreign Key)

 - `Product_ID` (Foreign Key)

 - `Quantity`

7. Product_Supplier (Associative Entity)

 - Attributes:

 - `Product_ID` (Foreign Key)

 - `Supplier_ID` (Foreign Key)

8. Warehouse_Product (Associative Entity)

 - Attributes:

 - `Warehouse_ID` (Foreign Key)

 - `Product_ID` (Foreign Key)

 - `Quantity_Stored`

 3.2 Relationships and Constraints

The relationships between these entities are defined to capture the business rules and ensure

data integrity.

115

1. Order-Customer Relationship

 - Type: One-to-Many

 - Description: One customer can place multiple orders, but each order is placed by exactly

one customer.

 - Constraints:

 - Foreign Key: `Order.Customer_ID` references `Customer.Customer_ID`.

 - Participation: Mandatory on the order side (every order must be linked to a customer).

2. Order-Product Relationship

 - Type: Many-to-Many

 - Description: Each order can contain multiple products, and each product can appear in

multiple orders.

 - Implementation: Via the associative entity `Order_Product`.

 - Constraints:

 - Foreign Keys: `Order_Product.Order_ID` references `Order.Order_ID`;

`Order_Product.Product_ID` references `Product.Product_ID`.

 - Primary Key: Composite key consisting of `Order_ID` and `Product_ID`.

3. Supplier-Product Relationship

 - Type: Many-to-Many

 - Description: Each supplier can supply multiple products, and each product can be

supplied by multiple suppliers.

 - Implementation: Via the associative entity `Product_Supplier`.

 - Constraints:

 - Foreign Keys: `Product_Supplier.Product_ID` references `Product.Product_ID`;

`Product_Supplier.Supplier_ID` references `Supplier.Supplier_ID`.

 - Primary Key: Composite key consisting of `Product_ID` and `Supplier_ID`.

4. Warehouse-Product Relationship

 - Type: Many-to-Many

 - Description: Products are stored in warehouses, and each warehouse can store multiple

products.

116

 - Implementation: Via the associative entity `Warehouse_Product`.

 - Constraints:

 - Foreign Keys: `Warehouse_Product.Warehouse_ID` references

`Warehouse.Warehouse_ID`; `Warehouse_Product.Product_ID` references

`Product.Product_ID`.

 - Primary Key: Composite key consisting of `Warehouse_ID` and `Product_ID`.

 ER Diagram

117

4. Relational Model and SQL Implementation

 4.1 Relational Tables

Based on the ER diagram, the relational model consists of the following tables:

1. Customer

 - `Customer_ID` INT PRIMARY KEY

 - `Name` VARCHAR(100) NOT NULL

 - `Email` VARCHAR(100) NOT NULL

 - `Phone_Number` VARCHAR(20)

2. Product

 - `Product_ID` INT PRIMARY KEY

 - `Name` VARCHAR(100) NOT NULL

 - `Description` TEXT

 - `Price` DECIMAL(10,2) NOT NULL

3. Order

 - `Order_ID` INT PRIMARY KEY

 - `Order_Date` DATE NOT NULL

 - `Total_Amount` DECIMAL(10,2) NOT NULL

 - `Customer_ID` INT NOT NULL

 - FOREIGN KEY (`Customer_ID`) REFERENCES `Customer`(`Customer_ID`)

4. Supplier

 - `Supplier_ID` INT PRIMARY KEY

 - `Name` VARCHAR(100) NOT NULL

 - `Contact_Name` VARCHAR(100)

 - `Phone_Number` VARCHAR(20)

118

5. Warehouse

 - `Warehouse_ID` INT PRIMARY KEY

 - `Location` VARCHAR(100) NOT NULL

 - `Capacity` INT NOT NULL

6. Order_Product

 - `Order_ID` INT NOT NULL

 - `Product_ID` INT NOT NULL

 - `Quantity` INT NOT NULL

 - PRIMARY KEY (`Order_ID`, `Product_ID`)

 - FOREIGN KEY (`Order_ID`) REFERENCES `Order`(`Order_ID`)

 - FOREIGN KEY (`Product_ID`) REFERENCES `Product`(`Product_ID`)

7. Product_Supplier

 - `Product_ID` INT NOT NULL

 - `Supplier_ID` INT NOT NULL

 - PRIMARY KEY (`Product_ID`, `Supplier_ID`)

 - FOREIGN KEY (`Product_ID`) REFERENCES `Product`(`Product_ID`)

 - FOREIGN KEY (`Supplier_ID`) REFERENCES `Supplier`(`Supplier_ID`)

8. Warehouse_Product

 - `Warehouse_ID` INT NOT NULL

 - `Product_ID` INT NOT NULL

 - `Quantity_Stored` INT NOT NULL

 - PRIMARY KEY (`Warehouse_ID`, `Product_ID`)

 - FOREIGN KEY (`Warehouse_ID`) REFERENCES `Warehouse`(`Warehouse_ID`)

 - FOREIGN KEY (`Product_ID`) REFERENCES `Product`(`Product_ID`)

119

 4.2 SQL Statements for Table Creation and Data Insertion

The following SQL statements create the necessary tables and insert sample data into each

table.

-- Create Database

CREATE DATABASE OnlineRetailStore;

USE OnlineRetailStore;

-- Create Customer Table

CREATE TABLE Customer (

 Customer_ID INT PRIMARY KEY AUTO_INCREMENT,

 Name VARCHAR(100) NOT NULL,

 Email VARCHAR(100) NOT NULL,

 Phone_Number VARCHAR(20)

);

-- Insert Sample Data into Customer Table

INSERT INTO Customer (Name, Email, Phone_Number) VALUES

('Alice Johnson', 'alice.johnson@example.com', '555-1234'),

('Bob Smith', 'bob.smith@example.com', '555-5678'),

('Charlie Brown', 'charlie.brown@example.com', '555-1234'); -- Shared phone number

-- Create Product Table

CREATE TABLE Product (

 Product_ID INT PRIMARY KEY AUTO_INCREMENT,

 Name VARCHAR(100) NOT NULL,

 Description TEXT,

 Price DECIMAL(10,2) NOT NULL

);

120

-- Insert Sample Data into Product Table

INSERT INTO Product (Name, Description, Price) VALUES

('Laptop', 'High-performance laptop with 16GB RAM', 1200.00),

('Smartphone', 'Latest model smartphone with OLED display', 800.00),

('Headphones', 'Noise-cancelling over-ear headphones', 200.00);

-- Create Order Table

CREATE TABLE `Order` (

 Order_ID INT PRIMARY KEY AUTO_INCREMENT,

 Order_Date DATE NOT NULL,

 Total_Amount DECIMAL(10,2) NOT NULL,

 Customer_ID INT NOT NULL,

 FOREIGN KEY (Customer_ID) REFERENCES Customer(Customer_ID)

);

-- Insert Sample Data into Order Table

INSERT INTO `Order` (Order_Date, Total_Amount, Customer_ID) VALUES

('2024-08-15', 1400.00, 1),

('2024-08-16', 800.00, 2),

('2024-08-17', 200.00, 3);

-- Create Supplier Table

CREATE TABLE Supplier (

 Supplier_ID INT PRIMARY KEY AUTO_INCREMENT,

 Name VARCHAR(100) NOT NULL,

 Contact_Name VARCHAR(100),

 Phone_Number VARCHAR(20)

);

121

-- Insert Sample Data into Supplier Table

INSERT INTO Supplier (Name, Contact_Name, Phone_Number) VALUES

('TechSupplier Inc.', 'David Lee', '555-8765'),

('GadgetWorld', 'Emma Davis', '555-4321');

-- Create Warehouse Table

CREATE TABLE Warehouse (

 Warehouse_ID INT PRIMARY KEY AUTO_INCREMENT,

 Location VARCHAR(100) NOT NULL,

 Capacity INT NOT NULL

);

-- Insert Sample Data into Warehouse Table

INSERT INTO Warehouse (Location, Capacity) VALUES

('New York', 5000),

('Los Angeles', 3000);

-- Create Order_Product Table

CREATE TABLE Order_Product (

 Order_ID INT NOT NULL,

 Product_ID INT NOT NULL,

 Quantity INT NOT NULL,

 PRIMARY KEY (Order_ID, Product_ID),

 FOREIGN KEY (Order_ID) REFERENCES `Order`(Order_ID),

 FOREIGN KEY (Product_ID) REFERENCES Product(Product_ID)

);

-- Insert Sample Data into Order_Product Table

INSERT INTO Order_Product (Order_ID, Product_ID, Quantity) VALUES

(1, 1, 1), -- Order 1: 1 Laptop

122

(1, 3, 2), -- Order 1: 2 Headphones

(2, 2, 1), -- Order 2: 1 Smartphone

(3, 3, 1); -- Order 3: 1 Headphones

-- Create Product_Supplier Table

CREATE TABLE Product_Supplier (

 Product_ID INT NOT NULL,

 Supplier_ID INT NOT NULL,

 PRIMARY KEY (Product_ID, Supplier_ID),

 FOREIGN KEY (Product_ID) REFERENCES Product(Product_ID),

 FOREIGN KEY (Supplier_ID) REFERENCES Supplier(Supplier_ID)

);

-- Insert Sample Data into Product_Supplier Table

INSERT INTO Product_Supplier (Product_ID, Supplier_ID) VALUES

(1, 1), -- Laptop supplied by TechSupplier Inc.

(2, 1), -- Smartphone supplied by TechSupplier Inc.

(3, 2); -- Headphones supplied by GadgetWorld

-- Create Warehouse_Product Table

CREATE TABLE Warehouse_Product (

 Warehouse_ID INT NOT NULL,

 Product_ID INT NOT NULL,

 Quantity_Stored INT NOT NULL,

 PRIMARY KEY (Warehouse_ID, Product_ID),

 FOREIGN KEY (Warehouse_ID) REFERENCES Warehouse(Warehouse_ID),

 FOREIGN KEY (Product_ID) REFERENCES Product(Product_ID)

);

123

-- Insert Sample Data into Warehouse_Product Table

INSERT INTO Warehouse_Product (Warehouse_ID, Product_ID, Quantity_Stored)

VALUES

(1, 1, 50), -- New York Warehouse: 50 Laptops

(1, 2, 30), -- New York Warehouse: 30 Smartphones

(2, 3, 100); -- Los Angeles Warehouse: 100 Headphones

``` 

 

Explanation: 

 

1. Database Creation: 

    - The `OnlineRetailStore` database is created and selected for subsequent operations. 

 

2. Customer Table: 

    - The `Customer` table includes `Customer_ID` as the primary key. 

    - Sample customers are inserted, including customers sharing the same phone number. 

 

3. Product Table: 

    - The `Product` table includes `Product_ID` as the primary key. 

    - Sample products such as Laptop, Smartphone, and Headphones are inserted. 

 

4. Order Table: 

    - The `Order` table includes `Order_ID` as the primary key. 

    - Each order is linked to a customer via `Customer_ID`. 

    - Sample orders are inserted. 

 

5. Supplier Table: 

    - The `Supplier` table includes `Supplier_ID` as the primary key. 

    - Sample suppliers are inserted. 

 

 

124



6. Warehouse Table: 

    - The `Warehouse` table includes `Warehouse_ID` as the primary key. 

    - Sample warehouses are inserted. 

 

7. Order_Product Table: 

    - The `Order_Product` table represents the many-to-many relationship between orders and 

products. 

    - It includes a composite primary key of `Order_ID` and `Product_ID`. 

    - Sample order-product associations are inserted. 

 

8. Product_Supplier Table: 

    - The `Product_Supplier` table represents the many-to-many relationship between products 

and suppliers. 

    - It includes a composite primary key of `Product_ID` and `Supplier_ID`. 

    - Sample product-supplier associations are inserted. 

 

9. Warehouse_Product Table: 

    - The `Warehouse_Product` table represents the many-to-many relationship between 

warehouses and products. 

    - It includes a composite primary key of `Warehouse_ID` and `Product_ID`. 

    - Sample warehouse-product associations are inserted. 

 

 

 

 

 

 

 

 

 

 

125



5. Conclusion 

 

The design and implementation of a relational database for an online retail store have been 

meticulously detailed in this report. By identifying key entities—Customer, Product, Order, 

Supplier, and Warehouse—and establishing the relationships between them, the database 

schema effectively captures the essential aspects of the store's operations. The use of 

associative entities such as Order_Product, Product_Supplier, and Warehouse_Product 

facilitates the management of many-to-many relationships, ensuring data integrity and 

reducing redundancy. 

 

Normalization principles have been applied to achieve an optimal database structure, 

enhancing data consistency and efficiency. The provided SQL statements for table creation and 

data insertion serve as a practical foundation for deploying the database in a real-world 

environment. This structured approach not only streamlines data management but also supports 

scalable growth, allowing the retail store to handle increasing volumes of transactions and 

inventory with ease. 

 

Overall, the proposed database system offers a robust solution for managing the complexities 

of an online retail operation, ensuring seamless data flow, accurate record-keeping, and 

efficient resource utilization. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

126



6. References 

 

1. GeeksforGeeks. (2023). RDBMS. Retrieved from 

[https://www.geeksforgeeks.org/rdbms/](https://www.geeksforgeeks.org/rdbms/) 

2. Elmasri, R., & Navathe, S. B. (2015). Fundamentals of Database Systems (7th ed.). 

Pearson. 

3. Coronel, C., & Morris, S. (2016). Database Systems: Design, Implementation, & 

Management (11th ed.). Cengage Learning. 

4. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2019). Database System Concepts (7th 

ed.). McGraw-Hill Education. 

5. W3Schools. (2023). SQL Tutorial. Retrieved from 

[https://www.w3schools.com/sql/](https://www.w3schools.com/sql/) 

6. Stack Overflow. (2023). Best Practices for Database Design. Retrieved from 

[https://stackoverflow.com/questions/1622001/best-practices-for-database-

design](https://stackoverflow.com/questions/1622001/best-practices-for-database-design) 

7. MySQL Documentation. (2023). Retrieved from 

[https://dev.mysql.com/doc/](https://dev.mysql.com/doc/) 

 

 

 

 

127



A FIELD PROJECT/IDP REPORT ON 

 

ER to relational schema 

Submitted partial fulfilment of the requirements for the award of the degree 

 

BACHELOR OF TECHNOLOGY 

in 

CYBER SECURITY 

 

Submitted by 

 

 

 

 

 

 

 

 

 

Department of ACSE 

School of Computing and Informatics 

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH 

(Deemed to be University)  

Vadlamudi, Guntur, Andhra Pradesh-522213, India  

April, 2024 

 

MEKA CHANDANA REDDY (221FA19002) 

GUDIVADA KRISHNA PRAKASH (221FA19027) 

JUVVA DIVYA (221FA19028) 

DEVABHAKTUNI AMAR SAI 

CHOWDARY 
(221FA19046) 

128

VIG NAN'S 
Foundation for Science, Technology & Research 

(Deemed to be University) 
-Estd. u/s 3 of UGC Act 1956 



\&/ I YL����� 
��' 

I (Orrm�<f tn IJ8 Univ r�l!y) 
.,_.,.. ult 111114' hf WA 

CEltTJFICATf. 

This is to certify that the field project/IOI' entitled "ER to relational schema" being 1>1Jbmitu:d 
by MEKA CIIANDANA REDDY-221fAl9002, CiUDIVADA KRISHNA l'RAKASH- 
221 FA 19027,JUVVADIVYA-221 FA 19028,DEVAnllAKTUNIAMAHSAI CH WDARY- 
221 PA 19046 in partial fulfilment of Bachelor of Technology in the Department of Advanced 
Computer Science and Engineering, Vignan's foundation For Science Technology & 
Research (Deemed to be University), Vadlamudi, Guntur District, Andhra Pradesh, India, is a 
bonafide work carried out by them under my guidance and supervision. 

d;? 
Gulde 

- Dr.Vcnkat.csulu Dondeti 

HoD/ACSE 

,. 9 
I ' 



 

 

 

 

DECLARATION  

 

We hereby declare that our project work described in the field project titled “ER to 

relational schema” which is being submitted by us for the partial fulfilment in the 

department of ACSE, Vignan’s Foundation for Science, Technology and Research 

(Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, and the result of 

investigations are carried out by us under the guidance of Dr. CH. Rose Rani. 

 

 

 

MEKA CHANDANA REDDY 221FA19002 

GUDIVADA KRISHNA PRAKASH 221FA19027 

JUVVA DIVYA 221FA19028 

DEVABHAKTUNI AMAR SAI 

CHOWDARY 
221FA19046 

 

 

 

 

 

 

 

 

 

 

 

 

 

130

VIGNAN'S 
F-ic,nto,$<.....,._T�·­ 

(Deemed to be umversrty) 
·EUO WllollJGC"<11956 



Abstract 

This report focuses on converting an Entity-Relationship (ER) model for a company database 

into a relational schema. The ER model describes the structure of the company's data, organized 

into entities such as Department, Employee, Project, and Dependent. Each entity is defined by 

its attributes, with relationships linking them to maintain data integrity and ensure efficient data 

management. 

 

The company consists of multiple departments, each managed by a manager and supervised by 

supervisors. Employees work in these departments and can be assigned to multiple projects 

simultaneously. The system also keeps track of the work hours of employees for each project. 

Additionally, the database manages the dependents of employees, storing details like name, 

date of birth, gender, and relationship type. Multi-valued attributes, such as skills for 

employees, are also handled. 

 

The process of converting the ER model to a relational schema involves creating tables for 

each entity and defining primary keys for unique identification. Relationships are represented 

using foreign keys, linking related tables to maintain referential integrity. The conversion 

ensures that multi-valued attributes, like employee skills, are handled by creating separate 

tables or using composite keys to accommodate multiple values for a single attribute. This 

relational schema supports the efficient querying and management of company data, allowing 

for quick access to employee, project, department, and dependent information while 

maintaining consistency. 

 

By implementing the relational schema derived from the ER model, the company database can 

efficiently manage complex relationships and large amounts of data while ensuring data 

integrity. The process demonstrates the effectiveness of converting conceptual models into 

relational structures, which are fundamental for building and managing robust databases in an 

organizational environment. 

 

 

 

 

 

 

 

 

 

131



Table of Contents 

1. Introduction 

2. Definitions 

   - 2.1 Entity 

   - 2.2 Attribute 

   - 2.3 Relation 

3. Problem Definition 

4. ER Diagram 

5. Converting ER to Relational Schema 

6. Relational Schema Representation 

7.References 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

132



 

1. Introduction 

A database is a structured collection of data stored and managed efficiently for easy retrieval 

and manipulation. The database serves as a digital filing system, organizing information into 

tables and ensuring it can be easily located and used. In this document, we explore a company’s 

structure through an ER diagram and convert it into a relational schema. 

 

In modern organizations, managing large volumes of data efficiently is essential. Databases 

play a critical role in organizing, storing, and retrieving this information effectively. The 

Entity-Relationship (ER) model serves as a foundational tool for designing databases by 

visually representing entities (such as departments, employees, projects, and dependents) and 

their relationships. It allows database designers to create a blueprint of how data interacts 

within a system, ensuring clarity and consistency before the physical implementation of the 

database. 

 

This report focuses on converting an ER model for a company's database into a relational 

schema, which is essential for building a functional and efficient database system. The ER 

model outlines key entities such as departments, employees, projects, and dependents, along 

with their respective attributes and relationships. The company is structured into multiple 

departments, each managed and supervised by specific roles, while employees can be assigned 

to various projects. The system also records work hours and maintains information about 

employees' dependents. 

 

The process of converting the ER model into a relational schema involves creating tables that 

correspond to the entities, assigning primary keys for unique identification, and establishing 

foreign keys to maintain relationships between these tables. This conversion is crucial as it 

transitions the conceptual model into a physical structure that can be implemented using a 

relational database management system (RDBMS). By ensuring that relationships and 

constraints are clearly defined, the relational schema supports data integrity, efficiency in query 

performance, and scalability for future expansions. 

 

 

 

 

 

 

 

 

133



 

2. Definitions 

 

 2.1 Entity 

An entity represents a distinct object or concept within the system that has an independent 

existence. Examples include `Employee`, `Department`, `Project`, and `Dependent`. 

 

 2.2 Attribute 

Attributes are the properties or characteristics that define an entity. They form the columns in 

a relational database table. For instance, attributes of `Employee` include `eno`, `name`, 

`dob`, etc. 

 

 2.3 Relation 

A relation refers to a table in a relational database or the relationship between tables. A 

relation is defined by entities and their attributes, and can also show relationships between 

entities like `Works_For` or `Manages`. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

134



 

3. Problem Definition 

The company is organized into departments, with employees working in each department. The 

relationships between employees, departments, projects, and dependents need to be modeled 

using an ER diagram, which is then converted into a relational schema.  

 

 Attributes of the Entities: 

- Department: `dno` (Department Number), `dname` (Department Name) 

- Employee: `eno` (Employee Number), `name`, `dob`, `gender`, `doj` (Date of Joining), 

`designation`, `basic_pay`, `panno` (PAN Number), `skills` (multi-valued) 

- Project: `pcode` (Project Code), `pname` (Project Name) 

- Dependent: `dname` (Dependent Name), `dob`, `gender`, `relationship` 

   

 Relationships: 

- Department: Managed by a manager, with supervisors overseeing employees. 

- Employee: Can work on multiple projects, and their in-time and out-time are tracked. 

- Dependent: Each employee may have dependents with details stored in the database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

135



 

4. ER Diagram 

 

Below is the ER diagram, showing relationships between `Employee`, `Department`, 

`Project`, and `Dependent` entities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

136

Oopartrnont 

cont.-ols 

dnsme 

N 

Dependen1 

gender relallonshop 

N N 

Pro1ect 

pname 



 

5. Converting ER to Relational Schema 

 

The process of converting the ER model into a relational schema is the next step in database 

design. Each entity and its attributes are mapped to a relational schema. Primary keys are 

underlined, and relationships are represented through foreign keys. 

 

 

 

6. Relational Schema Representation 

 

This section provides the relational schema representation based on the ER diagram, with all 

entities and their relationships. 

 

1. Department 

   - Department(`dno` PK, `dname`) 

   - Each department is uniquely identified by its `dno` and has a `dname`. 

 

2. Employee 

   - Employee(`eno` PK, `name`, `dob`, `gender`, `doj`, `designation`, `basic_pay`, `panno`) 

   - Employees have a unique identifier `eno`, and each employee has attributes like name, 

date of birth, gender, date of joining, and more. 

    

3. Skills (Multi-valued attribute of Employee) 

   - Emp_Skills(`eno` FK, `skill`) 

   - Since `skills` is a multi-valued attribute, a separate table is created for `Emp_Skills` to 

store multiple skills per employee. 

 

4. Project 

   - Project(`pcode` PK, `pname`, `dno` FK) 

   - Projects are controlled by departments, and each project has a project code `pcode`, 

project name `pname`, and is associated with a department `dno`. 

137



 

5. Work-In (Work Record for Employees on Projects) 

   - Work_In(`eno` FK, `pcode` FK, `work_date`, `in_time`, `out_time`) 

   - This table tracks the in-time and out-time for employees working on projects on specific 

dates. 

 

6. Dependent 

   - Dependent(`eno` FK, `dname`, `dob`, `gender`, `relationship`) 

   - This table stores the details of dependents of employees, including the employee's ID as a 

foreign key. 

 

 

 Schema Diagram Representation 

Below is a schema diagram based on the ER model: 

 

 

 

 

  

 

 

 

 

 

138

ENO PCODE DW INTIME oumME 

OOJ DESIGNATION BASIC PAN ONO SENO 

RELATIONSHIP GENDER DOB ENO DNAME 

W0111t5 1,1 

ENO 

EMl'IOYH 

EM!' _Sltlll 

ENO SKILL 

DEIAJIJMEHI 

DNO DNAME ENO 

PCODE PNAME DNO 



 

Alternate Schema Representation (Tables) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

139

PROJECT 
cccce 
nnamc 

DEPENDENT 
dname 
dob 
gender 
relationship 



 

7.References 

 

1. Elmasri, R., & Navathe, S. B. (2017). Fundamentals of Database Systems. Pearson. 

2. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2019). Database System Concepts. 

McGraw-Hill. 

3. Connolly, T., & Begg, C. (2015). Database Systems: A Practical Approach to Design, 

Implementation, and Management. Addison-Wesley. 

4. Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. 

Communications of the ACM, 13(6), 377-387. 

5. MySQL Documentation: https://dev.mysql.com/doc/ 

6. ER Diagrams and Relational Model Conversion Guidelines: 

https://www.tutorialspoint.com/dbms/dbms_er_diagram_representation.htm 

 

 

 

 

 

 

 

 

 

140

https://dev.mysql.com/doc/


A FIELD PROJECT/IDP REPORT ON 

 

ONLINE RETAIL STORE DATABASE 

 

Submitted partial fulfilment of the requirements for the award of the degree 

 

BACHELOR OF TECHNOLOGY 

in 

CYBER SECURITY 

 

Submitted by 

 

LAMBU DAMARUKANATH (221FA19008) 

MULLA JUNAID RAHMAN (221FA19010) 

DHULIPALLA MANASA (221FA19032) 

YARRAM VENKATA 

VAMSIDHAR 
(221FA19059) 

 

 

 

 

Department of ACSE 

School of Computing and Informatics 

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH 

(Deemed to be University)  

Vadlamudi, Guntur, Andhra Pradesh-522213, India  

April, 2024 

 

141

�j �a,o�c� T�lo�:.s� 
� (Deemed to be University) 

·Estd. u/s 3 of UGC Act 1956 



VIGNAN'S 
F� forSdwn. � I RtioNt'dl 

(Deemed to be University) 
·Estd W, 3 ol UGC Act 1956 

CERTIFICATE 

This is to certify that the field project/IDP entitled "ONLINE RETAIL STORE DATABASE" 
being submitted by LAMBU DAMARUKANATH-221FA19008,MULLA JUNAID 
RAHMAN-221FA19010,DHULIPALLA MANASA-221FA19032,YARRAM VENKATA 
VAMSIDHAR- 221FA19059 in partial fulfilment of Bachelor of Technology in the 
Department of Advanced Computer Science and Engineering, Vignan's Foundation For 
Science Technology & Research (Deemed to be University), Vadlamudi, Guntur District, 
Andhra Pradesh, India, is a bonafide work carried out by them under my guidance and 
supervision. 

cte)t--- 
Guide: HOD/A CSE 

Dr.Venkatesulu Dondeti 



 

 

 

 

DECLARATION  

 

We hereby declare that our project work described in the field project titled “ONLINE 

RETAIL STORE DATABASE” which is being submitted by us for the partial fulfilment in 

the department of ACSE, Vignan’s Foundation for Science, Technology and Research 

(Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, and the result of 

investigations are carried out by us under the guidance of Dr. CH. Rose Rani. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     

 

 

 

  

LAMBU DAMARUKANATH 221FA19008 

MULLA JUNAID RAHMAN 221FA19010 

DHULIPALLA MANASA 221FA19032 

YARRAM VENKATA VAMSIDHAR 221FA19059 

143

VIG NAN'S 
(Deemed to be University) 



Abstract 

 

The database design for an online retail store is structured to efficiently handle various core 

entities: customers, products, orders, suppliers, and warehouses. Each customer has a unique 

ID for identification while allowing flexibility in sharing phone numbers. Products are 

cataloged by unique IDs, descriptions, and prices, and can be included in multiple orders, 

reflecting typical purchasing behavior. Orders are linked to individual customers but can 

contain many different products. Additionally, suppliers and products have a many-to-many 

relationship, meaning one product can be supplied by multiple suppliers, and one supplier can 

provide multiple products. Warehouses are managed by tracking their locations and 

capacities, and each warehouse can store many different products. This relational database 

ensures that these interconnected relationships are well managed, allowing for seamless 

operations within the store. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

144



Contents 

 

1. Introduction 

2. Problem Statement 

3. System Overview 

4. Requirements Specification 

    - 4.1 Customer Management 

    - 4.2 Product Management 

    - 4.3 Order Management 

    - 4.4 Supplier Management 

    - 4.5 Warehouse Management 

5. Design Considerations 

    - 5.1 Structured Data 

    - 5.2 Query Optimization 

    - 5.3 Concurrency and Transactions 

    - 5.4 Reporting Capabilities 

6. Extension Work 

7. Conclusion 

8. References  

 

 

 

  

 

 

 

 

 

 

 

145



Introduction 

 

The database design for an online retail store plays a pivotal role in managing the key entities 

required to facilitate smooth operations. Among the core entities are customers, products, 

orders, suppliers, and warehouses. Each customer has unique attributes, such as a customer 

ID and contact details, and can place multiple orders over time. Each order can contain 

several products, reflecting the customer's purchase history and preferences. The relational 

structure ensures that customer data is accurately stored, allowing for efficient order tracking 

and personalized service offerings, such as recommendations or loyalty rewards. 

 

Products, another essential entity in the system, are uniquely identified by product IDs and 

can be linked to multiple suppliers. This enables the store to maintain diverse supplier 

relationships, ensuring that inventory is consistently replenished and product availability is 

maximized. The system also tracks stock levels in various warehouses, helping the store to 

efficiently manage its inventory. By recording which products are stored in which warehouse, 

the database supports better logistics, optimizing order fulfillment and delivery processes. 

Products can also be linked to various attributes, such as category, price, and stock levels, 

allowing the store to update information as needed and offer customers the latest product 

details. 

 

Furthermore, the database supports supplier and warehouse management, ensuring that 

relationships with multiple suppliers are properly maintained and that stock can be efficiently 

distributed across different storage facilities. This design ensures that the retail store can 

effectively monitor inventory, manage reorders, and streamline the supply chain. By 

leveraging relational database principles, the system is built to scale with the business, 

offering real-time insights into product availability and supplier performance while 

supporting the store's daily operations with minimal manual intervention. 

 

 

 

 

 

 

 

 

 

 

146



 

Problem Statement 

An online retail store wants to design a database to manage its operations efficiently. The 

system must manage customers, products, orders, suppliers, and warehouses, with the 

following details: 

 

- Customer: Each customer has a customer ID, name, email, and phone number. Customers 

may share the same phone number. 

- Product: Each product has a product ID, name, description, and price. 

- Order: Each order has an order ID, order date, and total amount. Each order is associated 

with one customer, but each order can contain multiple products, and each product can appear 

in multiple orders. 

- Supplier: Each supplier has a supplier ID, name, contact name, and phone number. 

Suppliers can supply multiple products, and each product can be supplied by multiple 

suppliers. 

- Warehouse: Each warehouse has a warehouse ID, location, and capacity. Products are stored 

in warehouses, and each warehouse can store multiple products. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

147



System Overview 

 

The system manages the core functionalities of an online retail store: 

 

- Customer Management: Captures customer details such as name, contact info, and ID. 

- Product Management: Manages product inventory, tracking product IDs, descriptions, 

prices, and supplier details. 

- Order Management: Allows orders to be associated with customers and linked to products. 

- Supplier Management: Maintains supplier information and their product offerings. 

- Warehouse Management: Tracks product storage in different warehouses by location and 

capacity. 

 

This system ensures seamless order processing, supplier relationships, and inventory 

management, essential for efficient retail operations. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

148



Requirements Specification 

 

 4.1 Customer Management: 

- Store customer details, including customer ID, name, email, and phone number. 

- Allow multiple customers to share the same phone number, as customers may register with 

the same contact details. 

 

 4.2 Product Management: 

- Maintain product information, including unique product IDs, names, descriptions, and 

prices. 

- Products can be supplied by multiple suppliers. 

 

 4.3 Order Management: 

- Track orders using unique order IDs, order dates, and total amounts. 

- Each order is linked to one customer. 

- An order can contain multiple products. 

 

 4.4 Supplier Management: 

- Record supplier details, including supplier ID, name, contact person, and phone number. 

- A supplier can provide multiple products, and each product may have multiple suppliers. 

 

 4.5 Warehouse Management: 

- Manage warehouse data, including warehouse ID, location, and capacity. 

- Track products stored in each warehouse. 

 

 

 

 

 

 

 

149



Design Considerations 

 

 5.1 Structured Data: 

A database management system (DBMS) organizes data into structured tables with well-

defined relationships, making it easier and faster to query specific information. Unlike flat 

files, a DBMS provides faster access due to its relational structure and indexing capabilities. 

 

 5.2 Query Optimization: 

DBMSs use techniques such as indexing, caching, and query optimization to enhance 

performance, allowing quick retrieval of complex data. In contrast, file systems require 

slower sequential searches to locate data. 

 

 5.3 Concurrency and Transactions: 

DBMSs provide concurrency control, ensuring that multiple users can access and modify data 

simultaneously without compromising data integrity. This feature is essential in an online 

retail store where many users may interact with the system at the same time. 

 

 5.4 Reporting Capabilities: 

A DBMS simplifies the generation of complex reports using SQL queries that can aggregate 

data from different tables. In contrast, file systems would require manual processing to 

generate reports, making it less efficient. 

 

 

 

  

 

 

 

 

 

 

 

 

150



Extension Work 

 

Here is an illustration of the database management system for the online retail store: 

 

ER-Diagram of the Database Management System for an Online Retail Store (This will 

include the core entities: Customer, Product, Order, Supplier, and Warehouse). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

151



Relational Model 

 

The relational model for the online retail store is illustrated as follows: 

 

1. Customer(`CustomerID`, `Name`, `Email`, `PhoneNumber`) 

2. Product(`ProductID`, `Name`, `Description`, `Price`) 

3. Order(`OrderID`, `OrderDate`, `TotalAmount`, `CustomerID`) 

4. OrderProduct(`OrderID`, `ProductID`, `Quantity`) 

5. Supplier(`SupplierID`, `Name`, `ContactName`, `PhoneNumber`) 

6. SupplierProduct(`SupplierID`, `ProductID`) 

7. Warehouse(`WarehouseID`, `Location`, `Capacity`) 

8. WarehouseProduct(`WarehouseID`, `ProductID`) 

 

 

 

 

152

I Result Grid I !Ill � File< Rows: I ...... Grid 11111 tl- Filer Rows: J..,., � II 
order _id product_id quantity 

order_ld order _date: total_amouit a.istorne' _id 

• 1111 202+10-07 "9999.00 • 1111 111 4 = 2024-09-03 "'987.00 2 

zzzz zzz 3 
�! 202+10-04 6500.00 3 

2024-02-06 36000.00 • 3333 333 2 5 2021-09-07 17500.00 5 

�i:i: 444 I • cm cm cm 

555 3 
• mm mm 

I Reult Grid 11111 \\ Filer Rows: I"''' 11'!1 §> I I ...... Grid J llll t\ '"""'"" 
1 
... , !!ii ! 

�J:I - contact_name ..... _ ...... ware'lOUSt_ld loatian - • 11111 .. ""' 12365' • 11 raiwatcolony 8 • ft: 125 22222 """ 221c7 1237S4 

�3 ""' ""' 124654 22 ttadiers colony • - n, 1256 

.� ..... ""' 113654 

� 

r,ddyo,lony 7 -1,e 1125 

""' 22lcl0 13365'1 puttan street clno: 156/1 1325 

"" "" ""' 5 rarwatcolon 9 • h: 9125 

• cm cm 



 

My SQL QUERIES: 

 

 

153

I Result Grid I !Ill t\- er Row,;, 

pr,oduct_id supplier _id 

• 111 lUll 
zzz 22222 
333 33333 
444 44444 
SSS 55555 

1 .......... 11111 t\ """""' 1 ... "' 
OJStomer _id """' .... '*""'-"'""' ' l """" naveen�.ccm 1234567 

2 '"VV' navya�.ccm lll<l08 ·� ·��-"" 7<1'889 
ramya ramyi!ltqnal.com 6�3 
pala'li """�·"" 687386 
1:1!1 1:1!1 1:1!1 

I ...... Grid I llll t� __ , I «II, � I .,, 
product_� """"' �lion pric• 

ll l laptop is oeneration new model '19999.00 
zzz mouse Wl'eless smooth to operate 60(),00 
333 keyboard wi'eless , glass cover 6000.00 
444 phono ono plus 10 R 50000 mah battory 35000.00 
555 cpu ram speed processor 17000.00 

• cm !Im !Im 



 

 

 

 

 

 

 

 

 

154

1 • CREATE DATABASE onlint_rttail_stort2; 

2 • USE onlint_rttail_stort2; 

3 • CREATE TABLE CU5tOl!tr5 ( 

cu5t<>Rr_id INT AUTO_IHCREMENT, 

name VARCHAR(25S) NOT NULL, 

Nail VARCHAR(255) NOT NULL, 

phont_nu111btr VARCHAR(29), 

PRIMARY KEY (custOl'lltr_id) 

); 
19 • ins,rt into custceers valuts( '1', 'navttn', 'navttnfpail ,COii', '1234567') j 

11 • instrt into cusrceers valuts( '2', 'n11vy1', 'n1vy�lil.c011', '1234998' )i 
12 • inst rt into cusrceers valuts( '3' 1 'ttja' 1 'ttj�il. COii' 1 '7476889') i 

13 • ins,rt into custceers vllluts( '4' 1 'rllll)'a' 1 'r9111y�il, cee", '679943'); 
14 • inst rt into customtrs valuts(' 5' 1 'ptllavi', 'pallavil!"ail. eee", '687386'); 

15 • setect • from custamtrsj 

16 • e CREATE TABLE productsl ( 

17 product_id INT AUTO_IHCREMENT, 

18 ni!lllt VARCHAR(255) NOT NULL, 

19 ducription TEXT I 
29 prict OECIMAL{191 2) NOT MJLL, 

21 HJMR'r UY (product_ld) 
22 ); 
23 • in,ut lnto pl"Oductsl v1l1M"1( 111, bp•op', I� pn,rr1tion - -1·,·4 M")J 
24 • ln1ut lllto pl"Oductsl v1l1M'1( Ul , ·-Ml , •lrtel-.11 ,_th to -eee , N )J 
25 • tn1ut into pl"Oduchl v1llM'1( ..... ), 
26 • in,ut into pn,ductsl ,,,.J.,..,( .._.., '-o,,e", ·one pl.n 18, 5MN .. t otte•y ,' )I 
27 • in•ut into pl"Oductsl v111M'•( sss·, pu",'r• •Pffd procnsor·,·17911 )J 

21 • select • f.-- producUlJ 

29 • CUA.If 1411.E ol"Wr1 ( 
,. oroer_id IlfT AIIIO_lllCU.ll[lfT, 
31 order _d1te l».lf IIJT NUlL, 
32 tou1_ ... unt OECUW..(18, 2) IIJT NULL, 
3J CUltOMr_id llfT, 
34 HJMR'r l((Y (ordtr_ld), 
35 �muc.,i UY (cu,tOMr_id) •nut[IICU cu,tOMn(cuotOMr_id) 
36 ); 
H • Insert illto orders vlllM's( ,,1·,· 14 Ill 1·,·4 '9","I )J 

" . " . in1ut Into ordtn nllM'1( · Ull , • ltl24' •1 , · 4Q 

ln1ut Into orders vlllM'I( , · 2824/11/k ·, 6 
• 1" )I ·,, 

411 • in1ut into ordtn v.i .... ,, . ...,.·.·i.24'12/li", �·.·4 \, 

lilQ 
41 • insert into orders vdue1( 'SSSS', '2824/89/87', 17S88 , 'S'); 
42 • serece • frOII ord,.-s; 
43 • cesc orders; 
44 • CREATE TABLE order- _products2 
45 order _id INT• 
46 product id INT, 
47 qu1nti ty INT HOT Pl.ILL, 

43 PRVWl:Y 11:EY (o.-dtl" _id, product_id), 
49 FOREIGN 11:EY (order_id) REFERENCES ordtrs(order_id), 
SQ FOREIGN 11:EY (p.-oduct_id) AfFEIIEHCES productsl(product_id) 
51 )J 
52 • insert into order _product52 vdues(' 1111 , · 111' • · 4' ) ; 
53 • insert into orde.-_p.-oducts2 v11lue,('2222','222", 3')J 
S4 • insert into order _product52 vdues(' 3333 ·, '333', '2' ) ; 
SS • insert into order _p.-oducts2 vdues( · 4444 , '444', · 1'); 
56 • insert into ordtl" _p.-oducts2 vdue1( 'SSSS ·, 'SSS', 3') J 
57 • sdect • fr011 order _p.-oducts2 J 

58 • CREATE TABLE suppliers ( 
59 supplier _id INT AUTO_IHCREMENT, 
68 n._ YARCHAR(255) HOT 11.JLL, 



 

 

 

 

 

 

 

 

 

 

 

155

� l,ni to 1000rows 

61 contact_na111e VARCHAR(255} NOT NULL, 
62 phone_nu•ber VARCHAR(29)., 
63 PRIMARY KEY (supplier _id} 
64 ); 

65 • insert into suppliers values(' 11111', 'sai', '22lc6', '123654' ); 
66 • insert into suppliers values('22222','eswar','22lc7'1'123754'); 
67 • insert into suppliers values('33333','hari'_,'221c8','124654'}; 
68 • insert into suppliers values(' 44444', 'john',' 221c9', '113654'} j 
69 • insert into suppliers values('55555','jack','221c19'1'133654'}; 
79 • select • froa suppliers ; 
71 • CREATE TABLE product_suppliersl 
72 product_id INT, 
73 supplier _id INT, 
74 

75 FOREIGN KEY (product_id) REFERENCES productsl(product_id}, 
76 FOREIGN KEY (supplier _id} REFERENCES suppliers(supplier _id) 
77 )j 
78 • insert into product_suppliersl values( '111', '11111' }; 
79 • insert into product_suppliersl values(' 222', '22222'}; 
89 • insert into product_suppliersl values(· 333', '33333 • }; 

� lrilo 100Jrowt 

81 • Insert into product_ supplitrsl valuu( '444', '44444' ) J 

82 • Insert into product_suppliersl values( '555', '55555' ); 
83 • select • frtm product_suppli,rsl ; 
84 • CREATE TABLE warehouses ( 
85 warehouse _ id INT AIJTO _ INCRU!ENT, 

86 location VARCHAR(255) l«lT /llll, 

87 capacity INT l«lT tlJLL1 

88 PRDWlY KEY (war,hous,_id) 
89 )j 

96 • Insert into war,hous,s values('011','raiwatcolony 8 • lin,',125); 
91 • Insert into war,houses values('022','t,ach,rs colony 4 • lin,',1256}; 
92 • Insert into war,houses valuu('033', 'r,ddycolony 7 - lint' ,1125); 
93 • Insert into serehcuses values('044','putta111 street dbno: 456/1 ',1325); 
94 • Insert into warehouses values( '055', 'raiwatcolon 9 • line' ,9125); 
95 • select • frtm war,hous,s ; 

96 • CREATE TABLE product_war,housu ( 
97 product_ id INT ,I 
98 war,hous, _ id INT, 

99 quantity INT l«lT Pl.ILL, 

180 PRDWlY KEY (product_id, war,house_id), 

181 FOREIGN KEY (product_id) REFERENCES products(product_id)1 

102 FOREIGN KEY (warehouse_id) REFERENCES warehouses(warehouse_id) 
103 ); 
184 • select • from product_warehouses ; 
105 



Conclusion 

 

The online retail store’s database is designed to efficiently manage various aspects of the 

store’s operations, including customer information, product inventory, order processing, 

supplier relationships, and warehouse storage. By organizing data into structured tables with 

defined relationships, the system ensures seamless operations, allowing the store to handle 

complex queries, maintain data integrity, and generate detailed reports. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

156



References 

1. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of Database Systems. Pearson. 

2. Date, C. J. (2004). An Introduction to Database Systems. Addison-Wesley. 

3. Connolly, T. M., & Begg, C. (2015). Database Systems: A Practical Approach to 

Design, Implementation, and Management. Pearson. 

4. Rob, P., & Coronel, C. (2016). Database Systems: Design, Implementation, & 

Management. Cengage Learning. 

5. Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008). Database Systems: The 

Complete Book. Prentice Hall. 

6. Korth, H. F., & Silberschatz, A. (2002). Database System Concepts. McGraw-Hill. 

7. O’Neil, P., & O’Neil, E. (2009). Database: Principles, Programming, and 

Performance. Morgan Kaufmann. 

8. Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks." 

Communications of the ACM, 13(6), 377-387. 

9. Chen, P. P. (1976). "The Entity-Relationship Model—Toward a Unified View of 

Data." ACM Transactions on Database Systems, 1(1), 9-36. 

 

157



A FIELD PROJECT/IDP REPORT ON 

 

ER DIAGRAM to RELATIONAL MODEL 

Submitted partial fulfilment of the requirements for the award of the degree 

 

BACHELOR OF TECHNOLOGY 

in 

CYBER SECURITY 

 

Submitted by 

PALLA MAHESWARARAO (221FA19016) 

POTLA AJAY (221FA19037) 

YADLAPALLI VISHNU 

VARDHAN 

(221FA19053) 

LAVU UHA SARANYA 
(221FA19063) 

 

 

 

 

 

Department of ACSE 

School of Computing and Informatics 

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH 

(Deemed to be University)  

Vadlamudi, Guntur, Andhra Pradesh-522213, India  

April, 2024 

 

158

�j Y.!o�c� T�lo�:.s� 
� (Deemed to be University) 

-Estd. u/s 3 of UGC Act 1956 



�/ VIG NAN'S 
,�kif\ I\), klel'IN. flt,cflntlloOY Ii lti .. trttl 

(Dorm�ct to b� UnlvPrslty) 
.,�,.1 w\ l 11f tltiC •• t miui 

CERT! FICATF. 

This is to certify that the ticlcl project/IOI' entitled "ER DIAGRAM to Relational MODEL" 
being submitted by PALLA MAHESWARA RA0-221FA19016, POTLA AJAY- 
221FA19037, YADLAPALLI VISHNU VARDI-IAN-221rAl9053, LAVU UI-IA 
SARANYA-221 FA 19063 in partial fulfilment ofDnchelor of Technology in the Department 
of Advanced Computer Science and Engineering, Vignan 's Foundation For Science 
Technology & Research (Deemed to be University), Vadlamudi, Guntur District, Andhra 
Pradesh, India, is a bonafidc work carried out by them under my guidance and supervision. 

& 
Dr.Ven�ti 

HoD/ACSE 



 

 

 

 

DECLARATION  

 

We hereby declare that our project work described in the field project titled “ER DIAGRAM 

to Relational MODEL” which is being submitted by us for the partial fulfilment in the 

department of ACSE, Vignan’s Foundation for Science, Technology and Research (Deemed 

to be University), Vadlamudi, Guntur, Andhra Pradesh, and the result of investigations are 

carried out by us under the guidance of Dr. CH. Rose Rani. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PALLA MAHESWARARAO 221FA19016 

POTLA AJAY 221FA19037 

YADLAPALLI VISHNU 

VARDHAN 

221FA19053 

LAVU UHA SARANYA 221FA19063 

160

VIG NAN'S 
(Deemed to be University) 



Abstract 

 

The Delivery Management System database is designed to efficiently manage a range of key 

entities involved in the delivery process, including delivery items, destinations, schedules, 

vehicles, and final delivery routes. This relational database structure ensures that each delivery 

item is tracked using a unique identification number, along with essential details such as 

weight, dimensions, insurance coverage, and delivery priority. By capturing comprehensive 

item information, the system can optimize logistical planning, ensuring that the right resources 

are allocated for each delivery based on item characteristics and urgency. Additionally, the 

system tracks the final destination of each item, ensuring that delivery locations are accurately 

recorded and managed. 

 

The database also integrates delivery schedules to monitor deliveries in progress and link items 

to their respective delivery vehicles and routes. By maintaining up-to-date schedules, the 

system can adjust delivery times based on real-time conditions, such as traffic or vehicle 

availability, minimizing delays and enhancing delivery accuracy. Each schedule is tied to a 

specific delivery route, which is optimized for efficient travel between multiple destinations. 

This helps reduce fuel costs, improve delivery time, and ensure that items reach their 

destinations in the most efficient manner possible. The system supports dynamic updates, 

allowing route modifications in response to last-minute changes in delivery priorities or 

unforeseen delays. 

 

In addition, the system manages relationships between delivery items, vehicles, and personnel, 

ensuring smooth coordination across all stages of the delivery process. Vehicles are assigned 

to specific routes based on capacity, distance, and availability, while drivers are linked to 

scheduled deliveries, allowing the system to track driver performance and availability. By 

leveraging this comprehensive relational database design, the Delivery Management System 

enhances the organization’s ability to manage large volumes of delivery items, streamline 

operations, and provide customers with accurate, real-time tracking and updates, ultimately 

improving the overall efficiency and reliability of the delivery process. 

 

 

  

 

 

 

 

 

 

161



CONTENTS 

 

1. Introduction 

2. Problem Statement 

3. System Overview 

4. Requirements Specification 

5. Design Considerations 

6. Database Structure 

   - Delivery Item Table 

   - Destination Details Table 

   - Schedule and Delivery Table 

7. Conclusion 

8. References 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

162



INTRODUCTION 

 

The delivery management system is designed to streamline and optimize the tracking and 

management of delivery items, ensuring seamless logistics operations. Each delivery item is 

meticulously documented with a unique identification number, along with essential attributes 

such as weight, dimensions, insurance status, and final destination. This detailed item tracking 

enables the system to handle diverse delivery requirements, ensuring that each package is 

transported under the appropriate conditions, whether it requires special handling due to size, 

fragility, or insurance coverage. By capturing this crucial data, the system ensures that each 

item’s journey from origin to destination is efficiently monitored, allowing for proactive issue 

resolution and real-time updates. 

 

In addition to item tracking, the system manages multiple delivery routes and schedules, 

providing end-to-end visibility of items in transit. By associating delivery items with specific 

routes and schedules, the system can accurately track their location and status throughout the 

delivery process. This integration allows for dynamic route optimization, adapting to real-time 

factors such as traffic conditions, weather disruptions, or delivery prioritization. Schedules are 

linked to each delivery route, ensuring that all items are delivered within the stipulated time 

frames, enhancing the overall efficiency and reliability of the system. This routing flexibility 

also improves resource utilization by ensuring that delivery vehicles are assigned optimal 

routes based on load capacity and delivery priorities. 

 

The system’s robust database design ensures efficient data handling and retrieval, supporting 

the management of large volumes of delivery items, routes, and schedules without 

compromising performance. By maintaining an organized and scalable structure, the system 

can handle increased demand, such as peak delivery periods or expanding business operations, 

while ensuring data accuracy and operational transparency. The design provides high 

reliability, minimizing the risk of lost or misrouted items, and enhancing customer satisfaction 

by offering accurate delivery timelines and real-time tracking capabilities. This comprehensive 

approach ensures that delivery logistics are managed with precision, contributing to the overall 

success of the business’s supply chain operations. 

 

 

 

 

 

 

 

 

163



PROBLEM STATEMENT 

 

To manage and monitor the deliveries of items effectively, a relational database is needed to: 

- Track delivery items by item number, weight, dimension, insurance, and final destination. 

- Maintain records of delivery schedules and routes. 

- Allow cross-referencing between delivery items and their final destination or route. 

- Ensure data integrity and accuracy for seamless logistics operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

164



SYSTEM OVERVIEW 

 

The system focuses on: 

1. Delivery Item Management: Storing details about each delivery item, such as its dimensions, 

weight, insurance status, and destination. 

2. Destination Management: Maintaining the location of delivery items and their final 

destination address. 

3. Schedule Management: Tracking the delivery schedule and route that each item follows. 

4. Delivery Route Tracking: Mapping items to specific delivery routes and schedules. 

 

 

 

 

 

 

 

 

 

 

165

Item Pfl'ln 

- 
-- - - 

" 

" 

�- - - 
F.,al-,. .... 

• - - 



REQUIREMENTS SPECIFICATION 

 

1. Delivery Item Management: 

   - Each item should have a unique item number. 

   - The system must store attributes such as weight, dimensions, insurance, and destination. 

    

2. Destination Details: 

   - Record the destination for each item, including address and delivery type. 

    

3. Schedule Management: 

   - Maintain delivery schedules by linking them to delivery routes and items. 

    

4. Relationships: 

   - Each delivery item must be mapped to its delivery schedule and route. 

   - Maintain the relationship between destinations and items for accurate delivery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

166



DESIGN CONSIDERATIONS 

 

1. Data Organization: 

   - Use structured tables to represent delivery items, schedules, and destinations. 

    

2. Data Integrity: 

   - Ensure that data is not duplicated or lost during operations. Enforce primary key 

constraints for item numbers and schedule numbers. 

    

3. Performance: 

   - Efficient queries are essential for retrieving item details and schedule information during 

real-time operations. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

167



DATABASE STRUCTURE 

 

SQL CODE: 

 

CREATE database ups; 

USE ups; 

SHOW databases;  

SHOW tables; 

CREATE table retailcentre (id varchar (10) primary key, type char (29), address char (100)); 

CREATE table shippeditems (itno int primary key, weight float, dimension int, insurance int, 

destination char (100), finaldel date, id varchar (18), foreign key(id) references 

retailcentre(id)); 

CREATE table transportationevents (schedulenum int, type char (20), deliveryroute char 

(50)); 

 INSERT INTO retailcentre VALUES ('2a15', 'truck', 'hyd’); 

INSERT INTO retailcentre VALUES ('2b15', 'flight', 'hyd’);  

INSERT INTO retailcentre VALUES ('2c16', 'train', 'vizag’); 

INSERT INTO shippeditems VALUES (1,5,20,2, jubilee hills', '2023-08-29","2015"); 

INSERT INTO shippeditems VALUES (2,3,5,48,1, 'banjara hills', '2023-09-20","2615"); 

INSERT INTO shippeditems VALUES (3,4.8,35,2, MVP colony", "2023-09-09", "2c16"); 

INSERT INTO transportationevents VALUES (25,’truck’,’Vijayawada to hyd’); 

 INSERT INTO transportationevents VALUES (26,’flight’,’Vizag to hyd’);  

168

SIDPPED ITEMS TRANSPORTATION EVENTS 

Type 

RETAIL CENTRE 

Address 

Destination Final 
Delivery 

Delivery 
Route 

Item 
_num��r- 

SmPPEDVIA 

Type 



INSERT INTO transportationevents VALUES (27,’truck’,’hyd to vizag’); 

 SELECT *FROM retailcentre; 

SELECT *FROM shippeditems; SELECT *FROM transportationevents; 

 

 

 

 

 

 

 

169

1 • 
2 • 
3 . .. . 
5 . 
6 . 
7 . 
8 . 
9 . 

10 . 
11 . 
12 . 
1' . 
14 . 
1S . 
16 . 
17 . 
18 . 
19 . Sf"LfCT 

I ........ -- - I ... I 'f! ' Ill Iii 

.. ' 

I • .Grid I fill ..... Rawi 

id type address 
2a1:5 truck. hyd 
:.b15 flight hyd 
2£:16 tTai, wag ,,,.,., IIUJ!I 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

170

' ' I• ·-10 � --1 11 .... �•a I 
itno weight ell Hell lsior I insJrana, des--. - id .. 1 5 20 2 )mlie .... 2023-08-29 2a15 

2 3.5 10 1 banjara..., 2023-09-20 21>15 
3 4.8 35 2 MVP colony 2023-09-09 2c16 

IZIIID lllllD lllllD 1!111!!11 111111!!11 lll!l!!II 11111!!11 • 



CONCLUSION 

 

The Delivery Management System database is designed to handle the critical components of 

the logistics process, ensuring efficient tracking of delivery items, schedules, routes, and 

destinations. By organizing data into structured relational tables, the system ensures data 

accuracy and quick retrieval, enabling seamless delivery operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

171



References 

1. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of Database Systems. Pearson. 

2. Date, C. J. (2004). An Introduction to Database Systems. Addison-Wesley. 

3. Connolly, T. M., & Begg, C. (2015). Database Systems: A Practical Approach to 

Design, Implementation, and Management. Pearson. 

4. Rob, P., & Coronel, C. (2016). Database Systems: Design, Implementation, & 

Management. Cengage Learning. 

5. Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008). Database Systems: The 

Complete Book. Prentice Hall. 

6. Korth, H. F., & Silberschatz, A. (2002). Database System Concepts. McGraw-Hill. 

7. O’Neil, P., & O’Neil, E. (2009). Database: Principles, Programming, and 

Performance. Morgan Kaufmann. 

8. Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks." 

Communications of the ACM, 13(6), 377-387. 

9. Chen, P. P. (1976). "The Entity-Relationship Model—Toward a Unified View of Data." 

ACM Transactions on Database Systems, 1(1), 9-36. 

 

  

 

 

 

 

 

172



A FIELD PROJECT/IDP REPORT ON 

 

Database architecture 

Submitted partial fulfilment of the requirements for the award of the degree 

 

BACHELOR OF TECHNOLOGY 

in 

CYBER SECURITY 

 

Submitted by 

 

BADDIGAM SUCHETHA (221FA19004) 

ATCHYUTA LOHITH (221FA19040) 

GAVARA VEERA VENKATA 

KRISHNA VAMSI 
(221FA19044) 

VUNADI TARUN KUMAR 

REDDY 
(221FA19057) 

 

 

 

 

 

Department of ACSE 

School of Computing and Informatics 

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH 

(Deemed to be University)  

Vadlamudi, Guntur, Andhra Pradesh-522213, India  

April, 2024 

 

173

VIG NAN'S 
Foundation for Science, Technology & Research 

(Deemed to be University) 
-Estd. u/s 3 of UGC Act 1956 



VIG NAN'S 
Foundltlon for Scieflc, Technology & Rew,ttdl 

(Deemed to be University) 
·£std. IVS 3 or UGC Acl 1956 

CERTIFICATE 

This is to certify that the field project/IDP entitled "Database architecture" being submitted 
byBADDIGAMSUCHETHA-221FA19004,ATCHYUTALOHITH-221FA19040,GAVARA 
VEERA VENKATA KRISHNA VAMSI -221FA19044, VUNADI TARUN KUMAR 
REDDY-221 FA 19057 in partial fulfilment of Bachelor of Technology in the Department of 
Advanced Computer Science and Engineering, Vignan's Foundation For Science 
Technology & Research (Deemed to be University), Vadlamudi, Guntur District, Andhra 
Pradesh, India, is a bonafide work carried out by them under my guidance and supervision. 

dS) 
Guide: 

Dr.Venkatesulu Dondeti 



 

 

 

 

DECLARATION  

 

We hereby declare that our project work described in the field project titled “Database 

architecture” which is being submitted by us for the partial fulfilment in the department 

of ACSE, Vignan’s Foundation for Science, Technology and Research (Deemed to be 

University), Vadlamudi, Guntur, Andhra Pradesh, and the result of investigations are 

carried out by us under the guidance of Dr. CH. Rose Rani. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BADDIGAM SUCHETHA 221FA19004 

ATCHYUTA LOHITH 221FA19040 

GAVARA VEERA VENKATA 

KRISHNA VAMSI 

221FA19044 

VUNADI TARUN KUMAR REDDY 221FA19057 

175

VIG NAN'S 
(Deemed to be University) 



Table of Contents 

 

1. Abstract   

2. Introduction   

3. Problem Statement 

4. DBMS Architectures 

   - 2-Tier Architecture   

     - Advantages   

     - Disadvantages   

   - 3-Tier Architecture   

     - Advantages   

     - Disadvantages   

   - Comparison   

5. Conclusion   

6. References 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

176



I. ABSTRACT 

 

For a web-based airline reservation and ticketing system, a 3-tier architecture is preferable 

due to its scalability, security, and maintainability.  The system must be capable of managing 

large volumes of user traffic, processing complex queries in real-time, and handling sensitive 

information such as personal and payment details. Two commonly considered architectural 

models are the 2-tier and 3-tier architectures, each offering distinct advantages and trade-offs 

in terms of complexity, resource management, and security. The decision between these 

architectures has significant implications for how the system performs under high demand 

and how easily it can adapt to future growth and evolving user needs. In this architecture, the 

application server mediates between the client and the database, ensuring efficient request 

handling, secure data processing, and easy updates to business logic without affecting other 

layers. The 2-tier architecture, where clients directly access the database, lacks scalability and 

poses security risks, making it unsuitable for large, complex systems. Therefore, the 3-tier 

architecture is ideal for handling high user loads and ensuring data integrity in an airline 

booking system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

177



II. INTRODUCTION 

 

When designing a web-based system for making airline reservations and selling tickets, 

selecting the appropriate database architecture is crucial for ensuring the system's 

performance, scalability, security, and long-term maintainability. The system must be capable 

of managing large volumes of user traffic, processing complex queries in real-time, and 

handling sensitive information such as personal and payment details. Two commonly 

considered architectural models are the 2-tier and 3-tier architectures, each offering distinct 

advantages and trade-offs in terms of complexity, resource management, and security. The 

decision between these architectures has significant implications for how the system performs 

under high demand and how easily it can adapt to future growth and evolving user needs. 

 

The 2-tier architecture involves direct communication between the client and the database, 

which simplifies the design and may be suitable for smaller-scale applications with limited 

user interaction. However, for an airline reservation system, which requires robust 

performance, high availability, and secure handling of sensitive data, the 2-tier model may 

introduce limitations. Direct client access to the database can lead to security vulnerabilities 

and scalability issues as the user base grows, potentially affecting response times and creating 

bottlenecks. Additionally, maintaining business logic within the client or database layer in 

this architecture can complicate updates and system upgrades. 

 

In contrast, the 3-tier architecture separates the application into three distinct layers: the 

presentation layer (user interface), the application layer (business logic), and the database 

layer. This model enhances scalability and security by decoupling the client from direct 

database access, allowing the application layer to manage interactions and enforce data 

security protocols. In the case of an airline reservation system, the 3-tier architecture enables 

the system to handle large volumes of concurrent users, distribute the load efficiently across 

multiple servers, and provide secure, real-time access to flight data, reservations, and 

payment processing. By separating concerns across these layers, the 3-tier architecture also 

simplifies system maintenance and upgrades, making it easier to implement new features, 

optimize performance, and ensure the system can scale as user demand increases. Ultimately, 

the 3-tier architecture is better suited for the complex, high-traffic requirements of an airline 

reservation system, providing the flexibility and security needed for seamless operations. 

 

 

 

 

 

 

178



III. PROBLEM STATEMENT 

 

If you were designing a web-based system to make airline reservations and sell airline tickets, 

which database architecture would you choose from different types of architectures (2-tier 

and 3-tier)? Why? Why would the other architectures not be a good choice? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

179



IV. DBMS ARCHITECTURES 

 

 2-Tier Architecture 

In a 2-tier architecture, there are two main components: the client-side (user interface) and 

the server-side (database server). The client communicates directly with the database server.   

 

 Advantages 

- Simplicity: Easy to implement and manage as there are fewer components involved. 

- Lower Latency: Direct access to the database can result in lower latency for simple 

operations. 

- Suitable for Small Applications: Works well for small-scale applications with limited 

concurrent users and transactions. 

 

 Disadvantages 

- Scalability Issues: It's difficult to scale because the client communicates directly with the 

database. This can lead to performance bottlenecks as the user base grows. 

- Security Risks: Storing database credentials on the client-side can lead to unauthorized 

access. 

- Maintenance: Changes to the database schema may require updates on all client systems, 

which complicates system upgrades. 

 

 3-Tier Architecture 

In a 3-tier architecture, three main components are present: the client-side (user interface), the 

application server (business logic), and the database server. The client communicates with the 

application server, which in turn communicates with the database. 

 

 Advantages 

- Scalability: The application server can be scaled horizontally, allowing the system to handle 

more users efficiently. This architecture is suitable for large applications with high 

concurrency. 

- Security: By separating the business logic from the database, access control to sensitive data 

is more robust. 

- Modularity: Better separation of concerns makes the system more maintainable and 

adaptable to change. It also enables easy updates to business logic without affecting the client 

or database layers. 

180



- Load Balancing: Distributes user requests across multiple servers, improving performance 

and fault tolerance. 

 

 Disadvantages 

- Complexity: More components make this architecture more complex to implement and 

maintain. 

- Higher Latency: The added application server layer can introduce slightly higher latency 

compared to direct database access in a 2-tier model. 

 

 Comparison 

In the context of an airline reservation and ticketing system, a 3-tier architecture is preferable 

due to the following reasons: 

- Scalability: The system must handle high traffic, especially during peak travel seasons. The 

3-tier architecture’s ability to scale makes it ideal. 

- Security: Sensitive data like passenger details and payment information requires strong 

protection, which is more effectively managed in the 3-tier architecture. 

- Maintainability: The airline industry frequently changes schedules, routes, and fares. The 

modular nature of 3-tier architecture allows for smoother updates without disrupting the 

entire system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

181



V. CONCLUSION 

 

For an airline reservation and ticketing system, the 3-tier architecture is the optimal choice 

due to its scalability, security, and maintainability. The application server layer ensures that 

user interactions are handled efficiently while protecting sensitive data and maintaining high 

system performance under heavy loads. On the other hand, the 2-tier architecture falls short 

in terms of scalability and security, making it unsuitable for complex, high-traffic systems 

like airline booking platforms. Therefore, the 3-tier architecture provides a robust 

infrastructure that supports the long-term reliability and flexibility required in this industry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

182



VI. REFERENCES 

 

1. Korth, H. F., & Silberschatz, A. (2011). *Database System Concepts* (6th ed.). McGraw-

Hill. 

2. [JavaTpoint DBMS Tutorial](https://www.javatpoint.com/dbms-tutorial)   

183



A FIELD PROJECT/IDP REPORT ON 

 

ER – diagram into Relational 

 

Submitted partial fulfilment of the requirements for the award of the degree 

 

BACHELOR OF TECHNOLOGY 

in 

CYBER SECURITY 

 

Submitted by 

ABUBBAKAR SIDDIQ SHARIFF (221FA19006) 

SUGGUNA RAMYA SRI (221FA19013) 

GADIPUDI VINEELA CHOWDARY (221FA19022) 

VANKUDOTHU HARSHITH (221FA19026) 

 

 

 

 

 

 

Department of ACSE 

School of Computing and Informatics 

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH 

(Deemed to be University)  

Vadlamudi, Guntur, Andhra Pradesh-522213, India  

April, 2024 

184

�j �Jo�c� T�lo�R:s� 
� (Deemed to be University) 

·Estd. u/s 3 of UGC Act 1956 



r.w: I Y-����� 
� 

I (Oet>med to t e UnlvM lty) 
,t,t\\ui\JtlUO 4,1 

CERTIFICATE 

This is to certify that the field project/lDP entitled "ER - diagram into Relntional" being 
submitted by ABUBBAKAR SIDDIQ SHARIFF-221FA19006, SUGGUNA RAMYA SRI- 
221FA19013. GADIPUDI \ INEELA CIIOWDARY-221FAl9022, VANKUDOTHU 
HARSHITH-21\PA\9026 in partial tultilmcnt of Bachelor of Technology in the Department 
of Advanced Computer Science nnd Engineering, Vignnn 's Foundation For Science 
Technology & Research (Deemed to be University). Vadlamudi, Guntur District, Andhra 
Pradesh, India. is u bona fide work carried out by them under my guidance und supervision. 

p 
Guide: 

Dr.Venkatesulu Dondeti 



 

 

 

 

DECLARATION  

 

We hereby declare that our project work described in the field project titled “ER – diagram 

into Relational” which is being submitted by us for the partial fulfilment in the department 

of ACSE, Vignan’s Foundation for Science, Technology and Research (Deemed to be 

University), Vadlamudi, Guntur, Andhra Pradesh, and the result of investigations are carried 

out by us under the guidance of Dr. CH.Rose Rani. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

ABUBBAKAR SIDDIQ SHARIFF 211FA19006 

SUGGUNA RAMYA SRI 211FA19013 

GADIPUDI VINEELA CHOWDARY 211FA19022 

VANKUDOTHU HARSHITH 211FA19026 

186

VIG NAN'S 
(Deemed to be University) 



Table of Contents 

 

1. Abstract   

2. Introduction  

3. Database Design and Implementation  

   1. Software and Hardware Requirements 

4. Entity-Relationship (ER) Model  

   1. Entities and Attributes 

   2. Relationships 

5. Relational Model  

   1. Tables and Constraints 

6. Query Implementation  

7. Result Analysis  

   1. Data Integrity 

   2. Query Performance 

   3. Scalability and Future Considerations 

8. Conclusion  

9. References 

 

 

 

  

 

 

 

 

 

 

 

 

187



1. Abstract 

 

This document presents the design and implementation of a relational database system for 

DAG's galleries in New Delhi and Mumbai. The system is designed to capture key 

information about artists, artworks, groups, and customers, including their preferences. By 

mapping an Entity-Relationship (ER) model into a relational schema, the database supports 

many-to-many and one-to-many relationships. The aim is to provide a scalable, secure, and 

efficient system that handles customer transactions, tracks artwork classifications, and offers 

insightful queries to aid decision-making for the galleries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

188



2. Introduction 

 

Art galleries, such as DAG, require an efficient and robust system to manage their diverse 

data and operations, which include tracking artists, artworks, and customer preferences. 

Effective management of this data is crucial not only for improving daily operations but also 

for providing valuable insights into customer trends, enabling galleries to make informed 

business decisions. By organizing and maintaining accurate records of artists and their works, 

as well as customer interactions, the gallery can enhance customer engagement and 

personalize their offerings. This project aims to design and implement a relational database 

that captures all the relevant information needed by DAG's galleries, facilitating better 

operational management and strategic planning. 

 

The relational database must effectively handle a variety of relationships between key 

entities, such as artists, artworks, groups, and customers. This includes the ability to link 

artists to their respective artworks while allowing for the categorization of artworks by style, 

medium, and other relevant attributes. Additionally, the system must accommodate the 

galleries' need to track customer spending habits and their preferences for specific artists and 

types of artwork. By capturing this data, the gallery can analyze customer behavior, tailor 

marketing strategies, and curate exhibitions that resonate with their audience.  

 

Furthermore, the database should be designed with scalability in mind, allowing it to grow as 

the gallery network expands. As new galleries are added or as the volume of artworks and 

customer data increases, the system must maintain its performance and efficiency. To achieve 

this, the database design will incorporate normalization techniques to reduce redundancy and 

improve data integrity, along with robust indexing strategies to enhance query performance. 

Ultimately, the successful implementation of this relational database will empower DAG’s 

galleries to streamline operations, enhance customer relationships, and foster a deeper 

understanding of the art market. 

 

 

 

 

 

 

 

 

 

189



3. Database Design and Implementation 

 

 3.1 Software and Hardware Requirements 

The implementation of this database requires the following software and hardware: 

 

- Software Requirements: 

  - MySQL database management system (DBMS) 

  - SQL Query tools such as MySQL Workbench 

  - Server OS: Windows/Linux 

 

- Hardware Requirements: 

  - Minimum 8GB RAM 

  - 2.5 GHz Processor or higher 

  - Minimum 100 GB storage space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

190



4. Entity-Relationship (ER) Model 

 

 4.1 Entities and Attributes 

The key entities involved in the database design for DAG’s galleries are: 

- Artists: Information about artists, such as name, birthplace, and style. 

- Artwork: Details of each piece of artwork, including title, type, and price. 

- Groups: Categories or classifications for artwork (e.g., styles, periods). 

- Customers: Information about customers, including their preferences for artists and groups. 

 

 4.2 Relationships 

- One-to-Many (1:N):  

   - Artists can create multiple pieces of artwork, but each artwork is linked to only one artist. 

   

- Many-to-Many (N:M):  

   - Each artwork can belong to multiple groups, and a group can include multiple pieces of 

artwork. 

   - Customers may have preferences for multiple artists and artwork groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

191



5. Relational Model 

 

 5.1 Tables and Constraints 

The relational model consists of several tables, including: 

- Artists Table: Stores details of each artist with a unique `ArtistID`. 

- Artwork Table: Contains the details of each artwork and a foreign key referencing 

`ArtistID`. 

- Groups Table: Lists different categories of artwork, with a unique `GroupID`. 

- Customers Table: Stores customer information, including spending habits. 

   

Constraints: 

- Primary Keys: `ArtistID`, `ArtworkID`, `GroupID`, and `CustomerID`. 

- Foreign Keys: Links between `Artwork` and `Artists`, as well as junction tables for many-

to-many relationships (e.g., `Artwork_Groups`, `Customer_Artists`, `Customer_Groups`). 

 

 

Artist Table 

 

 

 

 

 

 

 

192

ArtistlD Name Birthplace Age Style 

Vincent van Gogh Zundert, Netherlands 37 Post·lmpressionii 

Pablo Picasso Malaga, Spain 91 Cubism 

Frida Kahlo Coyoacan, Mexico 47 Surrealism 

Leonardo da Vinci Vinci, Italy 67 Renaissance 



Artwork Table 

 

 
 

 

     Group Table 

 
 

 

 

Customer Table 

 

193

ArtwlllklD frtle ArlisllD YearCreated T1pe Price 

StarryN�ht 1889 Dioo 
lllllOOII0.1111 Canvas 

Gliem<a 1937 Dioo 
2IIIIOOIIO.OO Canvas 

The!"" 19311 Dioo 1500000.00 Frilas Canvas 

Mooa Lisa 1503 Diool'opor 85000000.0 

GrouplD 

1 

2 

3 

4 

GroupName 

Impressionism 

Suirrealiism 

Cubiism 

Re1naissance 

CustomerlD Name Address TotalSpent 

Alice Johnson 123 Art St, New York, NY 25000.00 

Bob Smith 456 Canvas Rd, Los Angeles, CA 50000.00 

3 Carol White 789 Gallery Ave, Chicago, IL 30000.00 

4 David Brown 101 Painting Blvd, Miami, FL 75000.00 



6. Query Implementation 

CREATE TABLE Artists ( ArtistID INT PRIMARY KEY, 

Name VARCHAR(100) NOT NULL, 

Birthplace VARCHAR(100), Age INT, 

Style VARCHAR(100) 

); 

CREATE TABLE Artwork ( ArtworkID INT PRIMARY KEY, Title VARCHAR(100) NOT 

NULL, 

ArtistID INT, YearCreated YEAR, 

Type VARCHAR(50), Price DECIMAL(10, 2),FOREIGN KEY (ArtistID) 

REFERENCES Artists(ArtistID)); 

CREATE TABLE Groups ( GroupID INT PRIMARY KEY, 

GroupName VARCHAR(100) UNIQUE NOT NULL 

); 

CREATE TABLE Customers ( CustomerID INT PRIMARY 

KEY, 

Name VARCHAR(100) NOT NULL, 

Address VARCHAR(255), TotalSpent DECIMAL(10, 2) 

); 

INSERT INTO Artists (ArtistID, Name, Birthplace, Age, Style) VALUES 

(1, 'Vincent van Gogh', 'Zundert, Netherlands', 37, 'Post- Impressionism'), 

(2, 'Pablo Picasso', 'Málaga, Spain', 91, 'Cubism'), 

(3, 'Frida Kahlo', 'Coyoacán, Mexico', 47, 'Surrealism'), 

(4, 'Leonardo da Vinci', 'Vinci, Italy', 67, 'Renaissance'); 

194



INSERT INTO Artwork (ArtworkID, Title, ArtistID, YearCreated, Type, Price) 

VALUES 

(1, 'Starry Night', 1, 1889, 'Oil on 

Canvas', 1000000.00), 

(2, 'Guernica', 2, 1937, 'Oil on 

Canvas', 2000000.00), 

(3, 'The Two Fridas', 3, 1939, 'Oil on 

Canvas', 1500000.00), 

(4, 'Mona Lisa', 4, 1503, 'Oil on 

Poplar', 85000000.00); 

 

INSERT INTO Groups (GroupID, 

GroupName) VALUES (1, 'Impressionism'), 

(2, 'Surrealism'), 

(3, 'Cubism'), 

(4, 'Renaissance'); 

INSERT INTO Customers (CustomerID, Name, Address, 

TotalSpent) VALUES 

(1, 'Alice Johnson', '123 Art St, New York, NY', 25000.00), 

(2, 'Bob Smith', '456 Canvas Rd, Los Angeles, CA', 50000.00), 

(3, 'Carol White', '789 Gallery Ave, 

Chicago, IL', 30000.00), 

(4, 'David Brown', '101 Painting Blvd, Miami, FL', 75000.00); 

Select *from Artists ; 

Select * from Artwork ; 

Select *from Groups ; 

Select *from Customer; 

Select *from Artword_Groups; 

 Select *from Customer_Artists; 

 Select *from Customer_Groups; 

195



7. Result Analysis 

 

 8.1 Data Integrity 

The database maintains data integrity by enforcing primary and foreign key constraints. Each 

piece of data is uniquely identified, ensuring no duplication or inconsistency. 

 

 8.2 Query Performance 

The relational database supports efficient querying for customer and artist data. Indexed 

fields such as `ArtistID` and `ArtworkID` help optimize query performance, especially for 

large datasets. 

 

 8.3 Scalability and Future Considerations 

The database is designed to scale with the growth of the galleries. As new artworks, artists, 

and customers are added, the database structure can easily accommodate them without 

requiring major changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

196



8. Conclusion 

 

This database design for DAG’s galleries provides a robust solution to manage essential data 

such as artists, artworks, groups, and customers. The ER model and relational schema ensure 

efficient handling of many-to-many relationships and support for future expansion. The 

system's scalability and query performance enable DAG’s galleries to maintain data integrity 

while supporting a growing number of users and transactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

197



9. References 

- Korth, H. F., & Silberschatz, A. (2011). *Database System Concepts* (6th ed.). McGraw-

Hill. 

- MySQL Documentation. https://dev.mysql.com/doc/ 

- Javatpoint: https://www.javatpoint.com/dbms 

198



A FIELD PROJECT/IDP REPORT ON 

 

                   ER – diagram into SQL Query 

 

Submitted partial fulfilment of the requirements for the award of the degree 

 

BACHELOR OF TECHNOLOGY 

in 

CYBER SECURITY 

 

Submitted by 

 

PARUCHURI ASRITHA (221FA19001) 

RAAVI NAGA SUMITHRA 

CHOWDARY 
(221FA19009) 

KILARI DHANA MALLIKARJUNA 

RAO 
(221FA19019) 

MUVVA JITENDRA (221FA19056) 

 

 

 

 

Department of ACSE 

School of Computing and Informatics 

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH 

(Deemed to be University)  

Vadlamudi, Guntur, Andhra Pradesh-522213, India  

April, 2024 

 

199

�j YJo�c� T�lo�R:s� 
� (Deemed to be University) 

-Estd, u/s 3 of UGC Act 1956 



VIG NAN'S 
FouncsatlCWI for Sckf>ce, T«:hnolooY I R'ewtreh 

(Deemed to be University) 
·Estd u/1 3 of UGC .Act 19!i6 

CERTIFICATE 

This is to certify that the field project/IDP entitled "ER - diagram into SQL Query" being 
submitted by PARUCHURI ASRITHA-221FA19001, RAAVI NAGA SUMITHRA 
CHOWDARY- 221FAl9009, KILARI DHANA MALLIKARJUNA RA0- 
221FA19019,MUVVA JITENDRA-221FA19056 in partial fulfilment of Bachelor of 
Technology in the Department of Advanced Computer Science and Engineering, Vignan's 
Foundation For Science Technology & Research (Deemed to be University), Vadlamudi, 
Guntur District, Andhra Pradesh, India, 'is a bonafide work carried out by them under iny 
guidance and supervision. 

� 
HO� 

Dr.Venkatesulu Dondeti 



 

 

 

 

DECLARATION  

 

We hereby declare that our project work described in the field project titled “ER – diagram 

into SQL Query” which is being submitted by us for the partial fulfilment in the department 

of ACSE, Vignan’s Foundation for Science, Technology and Research (Deemed to be 

University), Vadlamudi, Guntur, Andhra Pradesh, and the result of investigations are carried 

out by us under the guidance of Dr. CH. Rose Rani. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PARUCHURI ASRITHA 221FA19001 

RAAVI NAGA SUMITHRA 

CHOWDARY 

221FA19009 

KILARI DHANA MALLIKARJUNA 

RAO 

221FA19019 

MUVVA JITENDRA 221FA19056 

201

VIG NAN'S 
(Deemed to be University) 



Table of Contents 

 

1. Abstract   

2. Introduction 

3. Entity-Relationship (ER) Model 

4. Relational Models 

5. Optimization 

6. SQL Code 

7. Result Analysis 

8. Conclusion 

9. References 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

202



1. Abstract 

 

This project aims to design a database for Dane County Airport to improve organization and 

management of critical operations. The database captures detailed information about 

airplanes, models, technicians, traffic controllers, tests, and employees. The system is 

designed to handle various relationships such as those between technicians and airplanes, 

employees and unions, and airplanes and models. By using structured query language (SQL), 

the database supports efficient management and retrieval of information, enhancing the 

overall functionality and organization of the airport. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

203



2. Introduction 

 

A database is a structured collection of data that is stored and managed in a way that allows 

for efficient retrieval, manipulation, and organization. Think of it as a highly organized digital 

filing cabinet where information can be stored in tables, making it easy to find and use. 

 

In this project, a database management system (DBMS) is designed for the Dane County 

Airport to address issues of poor organization. The airport houses numerous airplanes and 

requires maintenance work performed by technicians who specialize in different airplane 

models. Additionally, there are traffic controllers and tests conducted periodically for the 

airplanes to ensure safety standards. The goal of this database design is to effectively manage 

all relevant data in a systematic manner that ensures smooth airport operations. 

 

 Entities: 

An entity in a database is a distinct object or concept that you want to store information 

about. It could be a person, place, thing, or event. Each entity has attributes that describe its 

characteristics.  

 

 Relationships: 

In relational databases, tables can be related to each other. For example, a table for orders 

might be related to a table for customers. Relationships are established using keys. A primary 

key uniquely identifies each record in a table, while a foreign key is a field in one table that 

links to the primary key in another table. 

 

This database will organize all the critical information related to airplanes, models, 

technicians, traffic controllers, tests, and employees to create an efficient and scalable system. 

 

 

 

 

 

 

 

 

 

204



3. Entity-Relationship (ER) Model 

 

The ER model for the airport database includes the following entities: 

1. Airplane: Each airplane is identified by a registration number (`Aregno`) and is associated 

with a specific model (`Amodelno`). 

2. Model: Each airplane model is identified by a model number (`Modelno`) and has 

attributes such as capacity and weight. 

3. Technician: Technicians are responsible for maintaining airplanes. The database will store 

technician details such as SSN (`TSSN`), name, address, phone number, and salary. Each 

technician can work on multiple airplane models. 

4. Traffic Controller: Traffic controllers must undergo annual medical exams. The date of 

their most recent medical exam is stored. 

5. Test: Airplanes are subject to various tests. Each test is identified by an FAA test number 

(`FAANO`), a name, and a maximum possible score. 

6. Employee: Employees (including technicians) are associated with a union, and their union 

membership number is stored. 

 

 

 

 

 

 

205



4. Relational Models 

 

The relational model maps the ER entities to database tables: 

- Airplane Table: `Aregno` (primary key), `Amodelno` (foreign key referencing `Model`) 

- Model Table: `Modelno` (primary key), `Capacity`, `Weight` 

- TechnicianMaintains Table: `TSSN` (primary key), `Name`, `Address`, `PhoneNo`, 

`Aregno` (foreign key referencing `Airplane`), `Salary` 

- Traffic Controller Table: `TCSSN` (primary key), `DateOfMostRecentExam`, `Aregno` 

(foreign key referencing `Airplane`) 

- Expertise Table: `TSSN` (foreign key referencing `TechnicianMaintains`), `Modelno` 

(foreign key referencing `Model`) 

- Test Table: `FAANO` (primary key), `MaxScore`, `Name`, `Aregno` (foreign key 

referencing `Airplane`) 

- Employee Table: `ESSN` (primary key), `Ename`, `Unionno` 

- BelongsTo Table: `TSSN` (foreign key referencing `TechnicianMaintains`), `Unionno` 

(foreign key referencing `Employee`) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

206



5. Optimization 

 

To optimize database structure, relationships between entities such as technicians and 

airplanes are efficiently handled using primary and foreign key constraints. Indexing is 

applied to frequently queried fields, such as `Aregno` and `TSSN`, to speed up query 

performance. Additionally, redundant data is minimized to reduce storage costs. 

 

 

 

Airplane has ( A reg_no, A model_no, model_no) 

Model (Model_no, capacity, weight) 

TechnicianMaintains(Address, TSSN, Tname, Phoneno, A reg_no, Salary) 

Trafficcontrollers have( TCSSN, Date of most recent exam, A reg_no) 

Expertise (TSSN, Model_no ) 

Testundergoes ( FAA_no, Maxscore, name, A reg_no) 

Employee( Ename, ESSN, unionmembership_no ) 

Belongs to(TSSN, union-membership_no) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

207



6. SQL Code 

 

CREATE DATABASE Airport; 

USE Airport; 

 

-- Create Model Table 

CREATE TABLE Model ( 

    modelno INT PRIMARY KEY, 

    capacity INT, 

    weight FLOAT 

); 

INSERT INTO Model (modelno, capacity, weight) VALUES 

(1, 150, 60.5), (2, 180, 70.0), (3, 200, 75.2), (4, 220, 80.1), (5, 250, 85.0); 

 

-- Create Airplane Table 

CREATE TABLE Airplane ( 

    Aregno INT PRIMARY KEY, 

    Amodelno INT, 

    FOREIGN KEY (Amodelno) REFERENCES Model(modelno) 

); 

INSERT INTO Airplane (Aregno, Amodelno) VALUES 

(101, 1), (102, 2), (103, 3), (104, 4), (105, 5); 

 

-- Create Employee Table 

CREATE TABLE Employee ( 

    ESSN INT PRIMARY KEY, 

    Ename VARCHAR(50), 

    Unionno INT 

); 

INSERT INTO Employee (ESSN, Ename, Unionno) VALUES 

208



(501, 'Alice Brown', 1001), (502, 'Bob White', 1002), (503, 'Charlie Green', 1003),  

(504, 'David Black', 1004), (505, 'Eva Blue', 1005); 

 

-- Create TechnicianMaintains Table 

CREATE TABLE TechnicianMaintains ( 

    TSSN INT PRIMARY KEY, 

    TName VARCHAR(50), 

    Address VARCHAR(100), 

    PhoneNo VARCHAR(15), 

    Aregno INT, 

    Salary INT, 

    FOREIGN KEY (Aregno) REFERENCES Airplane(Aregno) 

); 

INSERT INTO TechnicianMaintains (TSSN, TName, Address, PhoneNo, Aregno, Salary) 

VALUES 

(201, 'John Doe', '123 Main St', '555-1234', 101, 50000), 

(202, 'Jane Smith', '456 Elm St', '555-5678', 102, 52000), 

(203, 'Mike Johnson', '789 Oak St', '555-9012', 103, 54000), 

(204, 'Emily Davis', '321 Pine St', '555-3456', 104, 56000), 

(205, 'Sarah Wilson', '654 Cedar St', '555-7890', 105, 58000); 

 

-- Create Traffic Controller Table 

CREATE TABLE Traffic ( 

    TCSSN INT PRIMARY KEY, 

    DateOfMostRecentExam DATE, 

    Aregno INT, 

    FOREIGN KEY (Aregno) REFERENCES Airplane(Aregno) 

); 

INSERT INTO Traffic (TCSSN, DateOfMostRecentExam, Aregno) VALUES 

(301, '2024-01-15', 101), (302, '2024-02-20', 102), (303, '2024-03-10', 103),  

(304, '2024-04-05', 104), (305, '2024-05-25', 105); 

209



 

-- Create Expertise Table 

CREATE TABLE Expertise ( 

    TSSN INT, 

    Modelno INT, 

    PRIMARY KEY (TSSN, Modelno), 

    FOREIGN KEY (TSSN) REFERENCES TechnicianMaintains(TSSN), 

    FOREIGN KEY (Modelno) REFERENCES Model(modelno) 

); 

INSERT INTO Expertise (TSSN, Modelno) VALUES 

(201, 1), (202, 2), (203, 3), (204, 4), (205, 5); 

 

-- Create Test Table 

CREATE TABLE Test ( 

    FAANO INT PRIMARY KEY, 

    MaxScore INT, 

    Name VARCHAR(10), 

    Aregno INT, 

    FOREIGN KEY (Aregno) REFERENCES Airplane(Aregno) 

); 

INSERT INTO Test (FAANO, MaxScore, Name, Aregno) VALUES 

(401, 100, 'Alpha', 101), (402, 95, 'Bravo', 102), (403, 98, 'Charlie', 103),  

(404, 97, 'Delta', 104), (405, 99, 'Echo', 105); 

 

-- Create Belong Table 

CREATE TABLE Belong ( 

    TSSN INT, 

    Unionno INT, 

    PRIMARY KEY (TSSN, Unionno), 

    FOREIGN KEY (TSSN) REFERENCES TechnicianMaintains(TSSN), 

210



    FOREIGN KEY (Unionno) REFERENCES Employee(Unionno) 

); 

INSERT INTO Belong (TSSN, Unionno) VALUES 

(201, 1001), (202, 1002), (203, 1003), (204, 1004), (205, 1005); 

``` 


211

7. Result Analysis

The database design and implementation for the Dane County Airport were executed

successfully, resulting in a structured system capable of efficiently managing and retrieving

essential information. This section provides an analysis of the system's key aspects, including

data integrity, query performance, and scalability.

 7.1 Data Integrity

Data integrity is crucial for maintaining accurate and reliable data within the database. The

following measures were implemented to ensure data integrity:

- Primary Keys: Each table has a defined primary key that uniquely identifies each record.

For example, the `Aregno` in the `Airplane` table and `modelno` in the `Model` table serve as

unique identifiers, preventing duplicate entries.

- Foreign Keys: Relationships between tables are enforced through foreign key constraints.

For instance, `Amodelno` in the `Airplane` table references `modelno` in the `Model` table,

ensuring that only valid airplane models are associated with registered airplanes. This also

prevents orphan records in the `Airplane` table.

- Data Types and Constraints: Appropriate data types and constraints (such as NOT NULL)

were defined for each column, which helps maintain consistency in the data. For example, the

`Salary` column in the `TechnicianMaintains` table is defined as an integer to avoid

erroneous data entries.

 7.2 Query Performance

The implementation of the database allows for efficient query processing, which is essential

for operational tasks at the airport. Key observations regarding query performance include:

- Indexing: Indexes can be applied to frequently queried columns, such as `Aregno` and

`TSSN`, to enhance search performance. This optimization facilitates quicker retrieval of

records, which is critical in a dynamic environment like an airport.

- Join Operations: The relational model allows for easy join operations, enabling the

extraction of related data across multiple tables. For instance, a query that retrieves all

technicians and their associated airplane models can be executed efficiently using JOIN

statements.

212

- Example Queries: Sample SQL queries demonstrated the performance of the database:

 - Retrieve all airplanes and their models:

 SELECT Airplane.Aregno, Model.modelno, Model.capacity

 FROM Airplane

 JOIN Model ON Airplane.Amodelno = Model.modelno;

 This query returns the registration numbers of airplanes along with their model numbers

and capacities, highlighting the relational capabilities of the database.

 7.3 Scalability and Future Considerations

The design of the airport database is scalable, accommodating potential growth in operations

and data. Future considerations include:

- Data Volume: As the airport grows, the volume of data may increase significantly. The

current structure can be expanded by adding more records to existing tables without requiring

a redesign.

- New Features: The database can be enhanced to include additional features, such as

integrating a user interface for data entry and retrieval, or incorporating advanced analytics to

monitor airplane performance and technician workload.

- Modular Design: The modular nature of the database allows for new tables and relationships

to be added easily. For instance, a new table for airport passenger data could be integrated

without disrupting existing structures.

- Performance Monitoring: Regular monitoring of database performance and usage patterns

will help identify areas that may require optimization, such as indexing or query tuning, to

maintain efficient operation as the system scales.

213

8.Conclusion

In conclusion, the airport database effectively meets the current organizational needs while

remaining adaptable to future growth and enhancements. The implementation of stringent

data integrity measures, efficient query performance, and scalable architecture positions the

airport for successful operational management.

214

9.References

1. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of Database Systems. Pearson.

2. Date, C. J. (2004). An Introduction to Database Systems. Addison-Wesley.

3. Connolly, T. M., & Begg, C. (2015). Database Systems: A Practical Approach to

Design, Implementation, and Management. Pearson.

4. Rob, P., & Coronel, C. (2016). Database Systems: Design, Implementation, &

Management. Cengage Learning.

5. Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008). Database Systems: The

Complete Book. Prentice Hall.

6. Korth, H. F., & Silberschatz, A. (2002). Database System Concepts. McGraw-Hill.

7. O’Neil, P., & O’Neil, E. (2009). Database: Principles, Programming, and

Performance. Morgan Kaufmann.

8. Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks."

Communications of the ACM, 13(6), 377-387.

9. Chen, P. P. (1976). "The Entity-Relationship Model—Toward a Unified View of

Data." ACM Transactions on Database Systems, 1(1), 9-36.

10. Firebird Project. (n.d.). "Firebird SQL." Retrieved from https://firebirdsql.org/

215

https://firebirdsql.org/

A FIELD PROJECT/IDP REPORT ON

 ORDER and ORDER_ITEM relations

Submitted partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

CYBER SECURITY

Submitted by

SUGGUNA PAVAN SAI

KRISHNA
(221FA19014)

SANDIREDDY VENKATA

RAKESH
(221FA19021)

KATARU TARUN KUMAR

REDDY
(221FA19039)

PATIBANDLA SAI DEEPAK (221FA19064)

Department of ACSE

School of Computing and Informatics

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH

(Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April, 2024

216

�j YJo�c� T�lo�R:s�
� (Deemed to be University)

-Estd, u/s 3 of UGC Act 1956

�lf����r;�
·Estel W"f; l of UGC J.ct 1956

CERTIFICATE

This is to certify that the field project/IDP entitled "ORDER and ORDER_ITEM relations"
l:>�!!l_g §\11:>!!lltt�c;I l;>y $l}GGUNA PAVAN SAT KRTSHNA-221FAl9014,$A]'l!)IBE1)1)Y
VENKATA RAKESH-221FAiiwi1� - -KATARU TARUN KUMAR REDDY-
221FA19039,PATIBANDLA SAI DEEPAK-221FA19064 in partial fulfilment of Bachelor of
Technology in the Department of Advanced Computer Science and Engineering, Vignan's
Foundation For Science Technology & Research (Deemed to be University), Vadlamudi,
Guntur District, Andhra Pradesh, India, is a bonafide work carried out by them under my
guidance and supervision.

Dr.Venkatesulu Dondeti

DECLARATION

We hereby declare that our project work described in the field project titled “ORDER and

ORDER_ITEM relations” which is being submitted by us for the partial fulfilment in the

department of ACSE, Vignan’s Foundation for Science, Technology and Research (Deemed

to be University), Vadlamudi, Guntur, Andhra Pradesh, and the result of investigations are

carried out by us under the guidance of Dr. CH. Rose Rani.

SUGGUNA PAVAN SAI KRISHNA 221FA19014

SANDIREDDY VENKATA RAKESH 221FA19021

KATARU TARUN KUMAR REDDY 221FA19039

PATIBANDLA SAI DEEPAK 221FA19064

218

VIG NAN'S
(Deemed to be University)

Table of Contents

1. Abstract

2. Introduction

3. Database Design and Implementation

 3.1 Software and Hardware Requirements

 3.2 Entity-Relationship (ER) Model

4. Relational Model

 4.1 Tables and Constraints

5. Query Implementation

6. Result Analysis

 6.1 Data Integrity

 6.2 Query Performance

 6.3 Scalability and Future Considerations

7. Conclusion

8. References

219

1. Abstract

This document presents a comprehensive database design and implementation plan for the

order-processing application at ABC, Inc. The primary objective is to establish a structured

and efficient database that effectively manages customer orders and order items, while

ensuring data integrity, optimal performance, and scalability. As the volume of transactions

grows, it is essential that the database can accommodate increasing data loads without

sacrificing speed or reliability. By focusing on these core principles, the database will support

ABC, Inc.'s operational needs and facilitate enhanced customer service.

The design process involves a thorough analysis of key entities and their interrelationships

within the order-processing domain. Critical entities include customers, orders, and order

items, each of which plays a vital role in the overall functionality of the application.

Understanding the relationships between these entities is crucial for creating a cohesive data

model that accurately reflects the business logic of the order-processing system. Additionally,

the design incorporates normalization processes to eliminate redundancy and minimize the

potential for data anomalies. This ensures that the database not only remains efficient but also

retains the integrity of the information stored within it.

Ultimately, the outcome of this design process is a well-organized database schema that

adheres to the principles of database normalization. The schema will facilitate efficient data

retrieval and manipulation, supporting the operational demands of ABC, Inc. By

implementing this structured approach, the database will provide a robust foundation for

managing customer orders, enhancing reporting capabilities, and enabling data-driven

decision-making. This comprehensive database design is set to improve operational

efficiencies and support the long-term growth of ABC, Inc. in the competitive market

landscape.

220

2. Introduction

A database is a structured collection of data that is stored and managed in a way that allows

for efficient retrieval, manipulation, and organization. Think of it as a highly organized digital

filing cabinet where information can be systematically stored in tables, making it easy to find

and use. Each table consists of rows and columns, where rows represent individual records

and columns represent attributes of those records. This structure not only enhances data

organization but also facilitates complex queries and reporting, making it an essential tool for

businesses and organizations.

In ABC, Inc.'s order-processing database, the ORDER and ORDER_ITEM relations play a

critical role in managing vital information about customer orders. The ORDER relation

includes key attributes such as order number (O), order date (Odate), customer number

(Cust), and total amount (Total_amount). This information allows the company to track

customer purchases and analyze order trends over time. On the other hand, the

ORDER_ITEM relation provides detailed information about individual items within each

order. It includes attributes such as order number (O), item number (I), quantity ordered

(Qty_ordered), total price (Total_price), and item-specific discount (Discount%). This level

of detail is crucial for managing inventory and ensuring accurate billing.

By applying a natural join between these relations, we can generate a comprehensive view of

each order along with its associated items. The natural join merges the data from the ORDER

and ORDER_ITEM tables based on the common attribute, which in this case is the order

number (O). This combined dataset enables ABC, Inc. to easily access information about the

specific items ordered, their quantities, prices, and any applicable discounts for each order.

Such insights facilitate effective order management, enhance customer service, and support

data-driven decision-making processes, ultimately contributing to the overall efficiency of the

order-processing system.

221

3. Database Design and Implementation

 3.1 Software and Hardware Requirements

- Software:

 - Database Management System (DBMS) such as MySQL or PostgreSQL

 - Development tools for SQL queries and database management

- Hardware:

 - Server with adequate RAM and storage capacity

 - Backup solutions to ensure data integrity

 3.2 Entity-Relationship (ER) Model

- Entities:

 - ORDER: Represents customer orders.

 - ORDER_ITEM: Represents individual items within an order.

- Attributes:

 - ORDER: O, Odate, Cust, Total_amount

 - ORDER_ITEM: O, I, Qty_ordered, Total_price, Discount%

222

4. Relational Model

 4.1 Tables and Constraints

The following tables will be created in the database:

- ORDER:

 - Attributes: O, Odate, Cust, Total_amount

 - Primary Key: O

- ORDER_ITEM:

 - Attributes: O, I, Qty_ordered, Total_price, Discount%

 - Primary Key: {O, I}

 - Foreign Key: O references ORDER(O)

223

5. Query Implementation

CREATE DATABASE ABC_Orders;

USE ABC_Orders;

CREATE TABLE ORDER (

 O INT PRIMARY KEY,

 Odate DATE,

 Cust INT,

 Total_amount DECIMAL(10, 2)

);

CREATE TABLE ORDER_ITEM (

 O INT,

 I INT,

 Qty_ordered INT,

 Total_price DECIMAL(10, 2),

 Discount DECIMAL(5, 2),

 PRIMARY KEY (O, I),

 FOREIGN KEY (O) REFERENCES ORDER(O)

);

224

6. Result Analysis

 6.1 Resulting Relation Schema (RES)

After performing a natural join on the `ORDER` and `ORDER_ITEM` relations, the resulting

schema RES can be defined as follows:

O Odate Cust Total_amount I Qty_ordered Total_price Discount%

1 2023-

01-15

101 250.00 101 2 100.00 10

1 2023-

01-15

101 250.00 102 1 80.00 5

2 2023-

01-18

102 150.00 NULL NULL NULL NULL

 6.2 Keys in the Relation RES

The primary key for the RES relation can be determined as:

- {O, I}: This composite key uniquely identifies each record in the RES relation.

 6.3 Normalization Process

To achieve 3NF, we decompose the RES relation into two separate relations:

- RES1 (Order Details):

 - Attributes: O, Odate, Cust, Total_amount

 - Primary Key: O

- RES2 (Order Item Details):

 - Attributes: O, I, Qty_ordered, Total_price, Discount%

 - Primary Key: {O, I}

This decomposition eliminates transitive dependencies and ensures that each relation adheres

to 3NF.

225

7. Conclusion

The natural join of the ORDER and ORDER_ITEM relations results in the RES schema,

which contains all relevant attributes, and the primary keys O (Order Number) and I (Item

Number). This schema is in the Third Normal Form (3NF), ensuring data integrity and

efficiency by eliminating partial and transitive dependencies. This well-structured and

normalized database design is ideal for ABC, Inc.'s order-processing application, facilitating

organized and non-redundant data management, ultimately improving the reliability and

efficiency of order processing.

226

8. References

1. Date, C. J. (2004). *An Introduction to Database Systems*. Addison-Wesley.

2. Elmasri, R., & Navathe, S. B. (2015). *Fundamentals of Database Systems*. Pearson.

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). *Database System Concepts*.

McGraw-Hill.

227

A FIELD PROJECT/IDP REPORT ON

 ORDER and ORDER_ITEM relations

Submitted partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY

in

CYBER SECURITY

Submitted by

DAMARACHARLA GEETHA

HARIKA

PALGULLA RANGASWAMI

REDDY

Department of ACSE

School of Computing and Informatics

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH

(Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh-522213, India

April, 2024

228

�j �Jo�c� T�lo�R:s�
� (Deemed to be University)

·Estd. u/s 3 of UGC Act 1956

(221FA19020)

(221FA19030)

SYED SHANIKA ZAIDA (221FA19038)

YADAVALLI MEENAKSHI (221FA19055)

VIG NAN'S
Foc.no.,tion for Sclenct. TKtw,ology I Rtt1arch

(DE!E!med to be University)
.£,td. u1s 3 or UGC Act t9S6

CERTIFICATE

This is to certify that the field project/lDP entitled "ORDER and ORDER_ITEM relations"
being

Department of Advanced Computer Science and Engineering, Vignan's Foundation For
Science Technology & Research (Deemed to be University), Vadlamudi, Guntur District,
Andhra Pradesh, India, is a bonafide work carried out by them under my guidance and
supervision.

d£J
Guide HoD/ACSE

IMEENAKSHl-221FA190 in partial fulfilment of Bachelor of Technology in the

submitted by DAMARACHARLA GEETHA HARIKA-
RANGASWAMIREDDY221FA190DSHANIKAZAIDA221FA19062,YADAVALL

DECLARATION

We hereby declare that our project work described in the field project titled “ORDER and

ORDER_ITEM relations” which is being submitted by us for the partial fulfilment in the

department of ACSE, Vignan’s Foundation for Science, Technology and Research (Deemed

to be University), Vadlamudi, Guntur, Andhra Pradesh, and the result of investigations are

carried out by us under the guidance of Dr. CH. Rose Rani.

DAMARACHARLA GEETHA HARIKA 221FA19012

PALGULLA RANGASWAMI REDDY 221FA19015

SYED SHANIKA ZAIDA 221FA19062

YADAVALLI MEENAKSHI 221FA19065

230

VIG NAN'S
(Deemed to be University)

Table of Contents

1. Abstract

2. Introduction

3. Database Design

 3.1 Schema Overview

 3.2 Natural Join Result

4. Keys in Relation RES

5. Normalization Process

 5.1 Identification of Functional Dependencies

 5.2 Decomposition to 3NF

6. Resulting Schema and Analysis

7. Conclusion

8. References

231

1. Abstract

This document provides a thorough analysis of the order-processing application database for

ABC, Inc., with a particular emphasis on the two key relations: ORDER and ORDER_ITEM.

These relations are crucial for managing customer transactions and ensuring accurate order

fulfillment. By applying a natural join to these relations, we derive a new schema, referred to

as RES, which integrates relevant data from both tables into a comprehensive view of each

order and its associated items. This step is essential in streamlining the database structure and

facilitating more efficient data retrieval processes.

As part of this analysis, we explore the keys within the RES schema, identifying primary

keys that uniquely define each record and foreign keys that establish relationships between

the integrated data. Understanding these keys is fundamental for maintaining referential

integrity, which ensures that the data remains consistent and accurate across the database.

Additionally, the document delves into the normalization process, advancing through the

stages necessary to achieve Third Normal Form (3NF). This process involves identifying

functional dependencies and systematically eliminating any redundancy or anomalies that

may arise from the existing data structure.

The analysis highlights the critical importance of normalization in the database design

process, emphasizing its role in ensuring data integrity and reducing redundancy. By adhering

to the principles of normalization, the database design not only enhances performance but

also simplifies maintenance and scalability. A well-normalized schema leads to improved data

consistency and reliability, which are vital for the effective operation of ABC, Inc.'s order-

processing application. Ultimately, this document aims to provide insights and

recommendations for optimizing the database structure, thereby supporting the company's

goal of efficient order management and exceptional customer service.

232

2. Introduction

In ABC, Inc.'s order-processing database, two primary relations play a crucial role in storing

vital information about customer orders: ORDER and ORDER_ITEM. The ORDER relation

includes key attributes such as order number (O), order date (Odate), customer number

(Cust), and total amount (Total_amount). This relation captures essential details regarding

each order, providing insight into customer transactions and facilitating the tracking of orders

over time. Understanding this information is critical for managing customer relationships,

analyzing purchasing patterns, and ensuring timely fulfillment of orders.

On the other hand, the ORDER_ITEM relation offers detailed insights into individual items

associated with each order. It comprises attributes such as order number (O), item number (I),

quantity ordered (Qty_ordered), total price (Total_price), and item-specific discount

(Discount%). This relation allows the company to monitor inventory levels, calculate total

sales, and apply any discounts that may affect pricing. By managing these details effectively,

ABC, Inc. can ensure accurate billing and maintain customer satisfaction through precise

order fulfillment.

By applying a natural join to these relations, we can consolidate the information from both

the ORDER and ORDER_ITEM relations into a more comprehensive schema. This new

schema provides a unified view of each order along with its associated items, enabling more

efficient data retrieval and reporting. For instance, this consolidated view allows the company

to quickly access all relevant details about an order, including the customer who placed it, the

date it was made, and the specific items purchased. Such integration not only enhances the

efficiency of the order-processing system but also supports better decision-making by

providing a holistic perspective of customer transactions. Ultimately, this approach

streamlines operations, enhances data management, and fosters improved customer service.

233

3. Database Design

 3.1 Schema Overview

The original schemas for the relations are as follows:

- ORDER (O, Odate, Cust, Total_amount)

- ORDER_ITEM (O, I, Qty_ordered, Total_price, Discount%)

After applying the natural join, the resulting schema RES will be:

O Odate Cust Total_amount I Qty_ordered Total_price Discount%

1 2023-01-15 101 250.00 101 2 100.00 10

1 2023-01-15 101 250.00 102 1 80.00 5

2 2023-01-18 102 150.00 NULL NULL NULL NULL

 3.2 Natural Join Result

The natural join combines records from the `ORDER` and `ORDER_ITEM` relations based

on the matching order number (O). This results in a relation RES with the following

attributes:

- O

- Odate

- Cust

- Total_amount

- I

- Qty_ordered

- Total_price

- Discount%

234

4. Keys in Relation RES

The primary key for the resulting relation RES is the composite key {O, I}. This key uniquely

identifies each record, ensuring that each item in an order is associated with its corresponding

order number.

235

5. Normalization Process

 5.1 Identification of Functional Dependencies

To analyze the relation and determine its normalization, we must identify the functional

dependencies:

1. O → Odate, Cust, Total_amount (An order number uniquely determines its date, customer

number, and total amount.)

2. {O, I} → Qty_ordered, Total_price, Discount% (A combination of order number and item

number uniquely determines the quantity ordered, total price, and discount.)

 5.2 Decomposition to 3NF

To ensure the relation is in the Third Normal Form (3NF), we can decompose RES into two

relations:

1. RES1 (Order Details):

 - Attributes: O, Odate, Cust, Total_amount

 - Primary Key: O

2. RES2 (Order Item Details):

 - Attributes: O, I, Qty_ordered, Total_price, Discount%

 - Primary Key: {O, I}

This decomposition eliminates transitive dependencies and ensures that each relation adheres

to 3NF.

236

6. Resulting Schema and Analysis

After normalization, the schemas for RES1 and RES2 are:

RES1:

O Odate Cust Total_amount

1 2023-01-15 101 250.00

2 2023-01-18 102 150.00

RES2:

O I Qty_ordered Total_price Discount%

1 101 2 100.00 10

1 102 1 80.00 5

This design optimizes data organization and adheres to normalization principles, ensuring

data integrity and reducing redundancy.

237

- --- --- -- -- -

7. Conclusion

The analysis of the natural join between the ORDER and ORDER_ITEM relations results in

a comprehensive schema RES. By identifying keys and normalizing the schema up to 3NF,

we ensure data integrity, efficiency, and adherence to best practices in database design. This

well-structured and normalized design is ideal for ABC, Inc.'s order-processing application,

enhancing the reliability and efficiency of order management.

238

8. References

1. Date, C. J. (2004). *An Introduction to Database Systems*. Addison-Wesley.

2. Elmasri, R., & Navathe, S. B. (2015). *Fundamentals of Database Systems*. Pearson.

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). *Database System Concepts*.

McGraw-Hill.

239

	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf
	5d644ab3da3a52067554239b3d837c69bdf5b2595515d15efd3adc1db7c1e8b2.pdf
	d60ff884d6e3edccdce1cc756e89f1312fd92adbc9d46853d2d85bf18ec69abd.pdf

